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Abstract— There is widespread belief in the computer science 

community that MPI is a difficult and time-intensive approach to 

developing parallel software. Nevertheless, MPI remains the 

dominant programming model for HPC systems, and many 

projects have made effective use of it. It remains unknown how 

much impact the use of MPI truly has on the productivity of 

computational scientists.  

In this paper, we examine a mature, ongoing HPC project, the 

Flash Center at the University of Chicago, to understand how 

MPI is used and to estimate the time that programmers spend on 

MPI-related issues during development. Our analysis is based on 

an examination of the source code, version control history, and 

regression testing history of the software. Based on our study, we 

estimate that about 20% of the development effort is related to 

MPI. This implies a maximum productivity improvement of 25% 

for switching to an alternate parallel programming model. 
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I.  INTRODUCTION 

Developing software to run on high-performance 
computing (HPC) systems is widely regarded as a difficult 
problem [3, 14, 16]. MPI [24], which is the dominant parallel 
programming model for writing software for HPC systems, has 
been identified as a major factor in the difficulty of developing 
HPC codes. Many parallel programming models (e.g., UPC [8], 
StarP [6], Chapel [5], X10 [7]) and frameworks (e.g., POOMA 
[30], Cactus [15], Sierra [11], Charm++ [21]) have been 
developed with the goal of improving the productivity of 
computational scientists by simplifying the task of developing 

parallel code that runs efficiently on large-scale HPC systems.  

Previously, we have examined the impact of using MPI 
versus other parallel programming models through controlled 
experiments using graduate students as subjects solving toy 
problems [18, 19, 20]. In this paper, we present a study that 
examines the effects of MPI on programmer effort in the 

context of a real, large-scale HPC software project. 

In particular, we are interested in understanding how MPI is 
used in the context of a larger project with a team of 
developers, and estimating its impact on a mature, ongoing 
software development environment.  We want to understand 
how much of the actual software development of a larger 
project genuinely involves MPI once the project is at a stage 

where it is being used to do real science.  

To address these questions, we have performed a case study 
[32] of the Flash Center at the University of Chicago. Such 
studies are increasingly being used to study HPC development 
time issues [4]. By focusing on an in-depth analysis of a single 
project, we hope to gain insights into the software development 
process of computational scientists and provide initial estimates 
on the impact of MPI that will serve as a starting-off point for 

future studies.  

A. Background on the Flash Center 

The goal of the Flash Center is to study thermonuclear 
flashes, events of rapid or explosive thermonuclear burning that 
occur on the surfaces and in the interiors of compact stars. 
Hosted at the University of Chicago, the Flash Center is one of 
the five original ASC-Alliance centers [17], started around 
1997 and funded by the National Nuclear Security 
Administration. These centers are provided access to 
unclassified HPC resources that are owned by the Department 

of Energy.  

To conduct this research, the Flash Center has developed 
FLASH, a modular and parallelized simulation code [13]. Of 
the code bases at the five original ASC-Alliance centers, the 
FLASH code is the largest and has the most number of external 
users. FLASH is an MPI-based, coupled, multi-physics 
application, written in FORTRAN and C. At the time this study 
was conducted, the Flash Center was in the process of 
developing a new version of FLASH (3.0) as well as 

maintaining a stable version for production work (2.5). 

B. Prior beliefs 

While this case study is largely exploratory, we did have 
several prior beliefs about MPI usage going into this study. 
MPI incurs large up-front costs, but after the initial 
development, we expected the maintenance costs due to MPI to 
be much less, because of the use of abstraction in the code to 
isolate the low-level communication details. Our previous 
studies have shown that larger HPC projects build a framework 
layer on top of MPI so that they do not have to modify as much 
MPI code over time [17]. We expected MPI usage to be 
compartmentalized in terms of code (i.e., MPI calls are not 
evenly distributed across the code base but are organized 
together) and in terms of developers (some developers may 
work on MPI-related code, but others may not touch MPI code 
at all). We also expected that only a small fraction of the MPI 

library would be used in practice. 
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C. How analysis was done 

We have applied an archeological approach [27], analyzing 
data that is generated naturally by the scientists as they develop 

the software. The three primary sources of data we used were: 

• Source code 

• Version control repository 

• Regression testing results 

The Flash Center project uses Subversion
1
  [28] for doing 

version control. This repository maintains a history of all 
changes to the code base. In addition, the Flash Center has 
developed a regression testing system called FlashTest. Each 
night, FlashTest executes numerous tests of FLASH-related 
code on multiple architectures and multiple compilers. 
FlashTest maintains a history of which tests passed and failed, 

accessible over a web interface.  

The study described in this report analyzed repository data 
from 02/22/2005 – 01/27/2008 and regression testing data from 
11/08/2006 – 01/27/2008. To analyze the source code, we used 
SCLC-UH

2
, which we modified slightly to deal with FLASH-

specific files. 

D. Scope of FLASH 

Table I shows the size of the FLASH code base in terms of 
source lines of code (SLOC), which counts all lines in a file 
except for blanks and comments. The FLASH code is roughly 
430 KSLOC, and is a combination of FORTRAN 77/90 (87%) 
and C (7%). The rest consists primarily of setup scripts, 
including FLASH-specific configuration files, FLASH-specific 
parameter files, makefiles, Python scripts, Perl scripts, and 
shell scripts.  This count only includes the code in the “source” 
directory. It excludes various other software tools that are used 
by the Flash Center but are not part of the main simulation, 
such as the FlashView software used to visualize the output of 
the FLASH code, and the FlashTest automated regression test 
system. For the remainder of this paper, we focus entirely on 

the FORTRAN and C files (which we refer to as source files).  

Note that FLASH is not a monolithic software package. 
Instead, it is designed as a collection of components. At 
compile-time, the user selects which components will be used 
to build an executable instance of the FLASH code. The 
FLASH-specific configuration files and the Python scripts 
assemble these components into a particular build of the 

system.  

A significant amount of the FLASH code base consists of a 
reused package, PARAMESH  [23, 25, 26], which handles the 
adaptive mesh capabilities of the code. PARAMESH is funded 
and developed separately; members of the Flash Center don’t 
maintain this code directly. Since FLASH supports three 
versions of the package, PARAMESH code is represented three 

times in the code base.  
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TABLE I.  SIZE OF CODE BASE 

 With PARAMESH Without PARAMESH 

Language SLOC % of total SLOC % of total 

FORTRAN 377,149  87.2% 148,118 80.3% 

C 29,058 6.7% 11,661 6.3% 

Parameter 

(FLASH) 

16,566 3.8% 16,566 9.0% 

Config 

(FLASH) 

3,841 0.9% 3,841 2.1% 

Make 2,247 0.5% 1,403 0.8% 

Perl 1,753 0.4% 1,753 1.0% 

Python 1,576 0.4% 889 0.5% 

Shell 475 0.1% 221 0.1% 

Total 432,665 100% 184,452 100% 

 

II. ESTIMATING THE IMPACT OF MPI 

A. MPI by code volume 

If the amount of time spent on MPI-related development 
issues is proportional to the time spent editing code that 
contains MPI, then we can estimate how much time is spent on 
MPI by examining the source code alone. To estimate this, we 
need an operational definition of “MPI-related code”. Here we 
adopt the convention that if a file contains at least a single call 

to the MPI library then it is MPI-related.  

The simplest way to quantify the impact of MPI is to count 
how many of the source files involve MPI-related code. As 
mentioned earlier, we consider source files to be any 
FORTRAN or C file. Table II shows the amount of MPI code, 
considering both the number of files, and the amount of code. 
Note the large impact of PARAMESH, which comprises a 
sizeable fraction of the total source code, as well as containing 
a great deal of the MPI code.  Since PARAMESH is developed 
and maintained external to the Flash Center, we believe the 
“Without PARAMESH” entries are better indicators of the 
amount of effort related to MPI, showing that between 7 and 

15% of the code base relies on MPI. 

In addition, the large difference in the percentages when 
counting using number of files versus source lines of code 
suggests that files that contain MPI tend to be larger.  The 
scatter plot in Fig. 1 confirms this and suggests that there is a 
relationship between the size of a file and the number of MPI 
calls within the file. A correlation analysis yields in an 
R

2
=0.49, which implies that 49% of the variance in the number 

of MPI calls in a file is explained by the size of the file. 

 

TABLE II.  AMOUNT OF MPI CODE 

   # of files SLOC 

With MPI  471 files 213,397 SLOC 

 PARAMESH Total 2625 files   406,207 SLOC 

  Percentage 17.9%  52.5%  

Without  MPI 145 files 23,335 SLOC  

 PARAMESH Total 1925 files  159,779 SLOC  

  Percentage 7.5% 14.6%  

 

 



B. MPI by overall activity 

The data from the previous section provides a sense of how 
much MPI code is in the project, but it assumes that the time 
spent developing MPI code is directly proportional to the 
amount of MPI code. However, some code may be touched 
only once, and other code may be modified many times over 
the lifetime of the project. In particular, there is reason to 
suspect that the MPI code typically may not be touched over 
and over. If the developers have built infrastructure on top of 
MPI, then all of the MPI costs may be paid up-front, and so we 
might expect little MPI effort later in the lifetime of the project. 
This would be a powerful argument that mature projects do not 
suffer from the use of MPI because they have already 

undergone the pain of MPI development. On the other hand, it 
may be that this level of encapsulation is not possible to 
maintain over time because the addition of unforeseen features 
necessitates changes to the software architecture [12]. In the 
case of FLASH, we know that one of the major features in 
version 3.0 is the introduction of new algorithms related to the 
adaptive mesh, which we expect to require extensive MPI 

development. 

An alternate way to measure the role of MPI is to measure 
the amount of time that the developers spend editing MPI code. 
While this is very difficult to measure directly, we can estimate 
this value using the version control history of the software. As 
previously mentioned, the Flash Center uses Subversion to 
manage their repository. Subversion keeps a history of all 
changes committed to the repository (“commits”), and assigns 
a numerical ID called a revision number to each commit. Using 
Subversion, it is simple to derive a changeset (the set of 
modified files associated with a commit) by comparing two 

successive revision numbers. 

To estimate the impact of the use of MPI on development 
time, we calculate the percentage of MPI-related commits. We 
define an MPI commit as a changeset that contains at least one 
file with at least one MPI call. Therefore, if ten files are 
committed to the repository in revision 2234, and one of those 
files contains an MPI call, we consider that commit to be MPI-
related. Even though some edits to files that contain MPI may 
not be MPI-related, we chose this metric to obtain a reasonable 
upper bound on MPI-related activity. In addition, we felt that 
trying to identify whether individual changes were MPI-related 
through a manual inspection of the code would be prohibitively 
time-consuming and might require that the analyst have 

significant understanding of the code. 

 

 

 

Figure 1.  MPI calls vs. Source Lines of Code (SLOC) 

 

Figure 2.  Number of times a file was committed versus the size of the file 



In the interval of data that we analyzed, there were 4110 
commits that involved source files. Of these commits, there 
were 1220 MPI-related commits. Therefore, about 29.7% of 
commits were MPI-related. While we expected there to be a 
relationship between the size of a file and the number of 
commits to a file, we saw no such correlation, as seen in Fig. 2. 
Similarly, we observed no relationship between the number of 
MPI calls and number of commits to a file, as shown in Fig. 3. 
While there may appear to be a negative correlation in Fig. 3 
by visual inspection, a linear regression analysis in all cases 
yields an R

2
<.01, which suggests that there are no meaningful 

linear trends in the data.  Excluding the PARAMESH code 

does not change the results of the analysis.

C. MPI by corrective maintenance (bugfixes) 

There are several reasons why a developer may make 
modification to source code. The traditional software 
engineering literature distinguishes between four kinds of 

software maintenance [29]: 

• corrective: fixing defects (i.e., bugs) 

• adaptive: adapting software to a new environment 

(e.g., porting to new machines) 

• perfective/enhancement: adding new features 

• preventative: reorganizing the code to simplify 

future changes  

Using data from the FlashTest regression test database, we 
estimated the activity related to corrective maintenance. This 
database indicates which regression tests passed and failed on 

which days. Fig. 4 shows the number of regression tests 

passing (green) and failing (red) over time. 

 

If we consider that regression test X failed on 03/26/07 and 
passed on 03/27/07, then we can assume that the developers 
modified the code to fix the test on 03/27/07. In FLASH, each 
regression test is associated with a set of directories that 
contain the source file used to build the test. We can make an 
educated guess about which changes on 03/27/07 were 
associated with fixing that test by looking at all of the commits 
on that day that involved files in the directories associated with 

regression test X.  

In the data, we observed 3641 incidents where a regression 
test was broken on one day and fixed on the next day. Of these, 
we were able to associate 1850 of these with commits to source 
files, which is about half. In the other cases, we must assume 
that the regression test was fixed by some means other than 
modifying a source file, such as a scientist approving new 
results. In some cases, multiple commits were associated with a 

particular fix of a regression test. 

 

 

 

 

 

Figure 3.  Number of Commits vs. MPI calls contained in the file 

 



TABLE III.  COMMITS RELATED TO BUG-FIXING 

 # of commits 

Non-MPI 2366 (69.9%) 

MPI 1021 (30.1%) 

Total 3387 (100%) 

 

Table 3 summarizes the results of this analysis. Based on 
these results, we estimate about 30% of the activity related to 
fixing bugs involved MPI code. This is consistent with the 
results from Section IIB, and suggests that bug-fixing activity 
does not look different from the other forms of development 

activity with respect to how much of it involves MPI. 

D. Distribution of effort across developers 

Large HPC projects such as FLASH require multiple 
developers. We expect that the amount of MPI-related work 
will not be distributed evenly across the developers. At a 
coarse-grained level, we can see this division of labor in the 
Flash Center, as it is divided up into distinct groups (e.g. 
astrophysics, basic physics, computational physics and 
validation), and it is the responsibility of the Flash Code Group 
to maintain the software. This group is much more involved in 
modifying MPI code than any of the other groups. Here, we are 

concerned with variation within the Code Group. 

As in Section IIB, we use commits as an estimate of the 
time spent on editing MPI-related code.  Table IV shows 
commit activity for the ten developers who had the highest 
number of commits to source code. The table shows the 
number of commits to source code (raw, and as a percentage of 
the total), the number of commits that involved at least one 
MPI-related file (raw, and as a percentage of total), and an 
estimate of how much time each developer spends on MPI-
related issues based on this commit data. The median time 
spent in MPI-related development is 17.5%, with eight out of 
the ten developers spending less than 29.1% of their time on 
MPI-related issues. Note that developers H and I spend over 

half of their time on MPI-related issues. 

 

 

 

TABLE IV.  COMMITS ACROSS DEVELOPERS 

Developer # of  source 

commits 

# of MPI commits % MPI-related 

development 

A 666 (16.2%) 112  (12.3%) 16.8% 

B 630 (15.3%) 110  (12.1%) 17.5% 

C 557 (13.6%) 162  (17.9%) 29.1% 

D 484 (11.8%) 81    (8.9%) 16.7% 

E 358   (8.7%) 36    (4.0%) 10.1% 

F 286   (7.0%) 43    (4.7%) 15.0% 

G 246   (6.0%) 41   (4.5%) 16.7% 

H 241   (5.9%) 122 (13.5%) 50.6% 

I 115   (2.8%) 81   (8.9%) 70.4% 

J 102   (2.5%) 19    (2.1%) 18.6% 

Total 4110 1220  

III. HOW MPI IS USED IN CODE 

A. Distribution of MPI code 

In addition to how much time is spent on MPI-related 
issues, we are also interested in understanding how MPI is used 
throughout FLASH. Fig. 5 shows a visual representation called 
a treemap [31] of the source code. Each box represents a source 
file. The size of the box is proportional to the number of source 
lines of code (SLOC), and the directories are represented as 
enclosing boxes, with files in the same directory appearing in 
the same box. The color indicates the number of MPI calls: 
bright green indicates many calls (max=88), and darker 
indicates fewer calls (min=0). The color is proportional to the 
logarithm of the number of MPI calls to increase the visibility 
of files that have small but non-zero number of calls. The three 
versions of PARAMESH are indicated with orange rectangles. 
From this plot, it is evident that most of the MPI-related code is 

contained within PARAMESH, as suggested by Table II. 

Fig. 6 shows the same data without the PARAMESH code. 
The color scale has changed, as the maximum number of MPI 
calls in a file is 35. We can see in this figure that the MPI-
related files in the non-PARAMESH code are scattered about 

the code base. 

B. Use of MPI functions 

While fully functional MPI programs can be written with 
six basic functions (MPI_Init, MPI_Finalize, 
MPI_Comm_Size, MPI_Comm_Rank, MPI_Send, 
MPI_Recv), the MPI 1.1 standard [24] defines 215 separate 
functions. We wanted to understand how extensively the 

FLASH code used the MPI library. 

 

 

 

 

Figure 4.  Regression tests passing (green) and failing (red) 



 

 

Figure 5.  Treemap of source, highlighting MPI calls. PARAMESH directories outlined in orange 

 

 

Figure 6.  Treemap of source, highlighting MPI calls, without PARAMESH node 



The entire FLASH code makes use of 57 MPI functions, 
which represents 27% of the full range of available functions. 
The distribution of MPI function calls is shown as a Cleveland 
dot plot [9] in Fig. 7. The large numbers of barriers in the code 
are mostly PARAMESH-related, in either the PARAMESH 
files or in test files that call PARAMESH code

3
. We also note 

that FLASH uses more of the MPI library than we expected, 
although many functions are used only once. The MPI calls 
appear to have a Pareto distribution, as 80% of the total number 
of MPI function calls are due to 23% of the MPI functions in 

the code. 

                                                             
3
 In the most recent version of PARAMESH, all barriers have 

been removed. 

If we exclude the PARAMESH code in our analysis, we see 
that FLASH makes use of 45 MPI functions and is dominated 
by barriers and allreduce. Here the distribution of MPI calls 
across functions is more evenly distributed, as 80% of the calls 

are due to 40% of the functions. 

IV. DISCUSSION 

Table V summarizes the estimates of MPI-related activity 

using the five different estimates we examined in this paper. 

 

 

 

Figure 7.  Frequency of MPI calls 



TABLE V.  ESTIMATES OF MPI-RELATED TIME 

# of files (without PARAMESH) 7.5% 

SLOC (without PARAMESH) 14.6% 

Activity (commits) 29.7% 

Debugging activity 30.1% 

Median developer activity 17.5% 

 

This gives us an estimate of the percentage of work spent 
on MPI on the order of 10-30%, with a mean of about 20%. Let 
us assume that an alternative to MPI could completely 
eliminate the need for all of this development activity, and 
would have no impact on any other aspect of the project such 
as program performance. By Amdahl’s Law [1], this implies a 

maximum programmer productivity increase of 

1

1 0.2
=1.25 

which gives an upper bound on productivity improvement 
of an MPI replacement at about 25%. Given the risks 
associated with adopting a new technology, and the startup 
costs associated with adopting a new technology, it is 
unsurprising that mature HPC projects such as the Flash Center 
would be reluctant to experiment with new parallel 
programming technologies that promise large boosts in 

programmer productivity [2]. 

The frequency and distribution of MPI function calls in 
FLASH suggests that the MPI code mostly uses only a small 
number of MPI function calls and is mostly compartmentalized 
to within certain subsystems, particularly those related to the 
mesh. Despite this, we do see many functions with a very small 
number of MPI function calls scattered about the code, and we 

see many MPI functions that are used very infrequently.   

V. DISCUSSION WITH DEVELOPERS 

To cross-check our results, we asked the members of the 
Flash Center Code Group about whether they felt the results 
were consistent with their experience. The group expressed that 
the figure of 20% of code-development effort being devoted to 
MPI is too high, and several people guessed that it would be 
closer to 10%. The developers attributed the discrepancy to 

four factors: 

1. Most of the MPI-related calls are found in libraries that 
were not developed by Flash members. While the developers 
may make changes to routines that call these libraries, but they 

don’t actually write the MPI code themselves.  

2. The effort of changes to the PARAMESH library will be 
over-estimated because multiple PARAMESH versions are 
supported. For example, when working on a change in 
PARAMESH 3 calls, nearly the exact same change will have to 
be made for the PARAMESH 2 calls, and possibly 

PARAMESH 4.  

3. The study was performed during an atypical period. 
During the particular time period that the study was conducted, 
there were some efforts to develop new parallel algorithms. 
However, historically, the parallel algorithms are confined to 
external libraries. While everybody in the group needs to be 

aware of MPI issues, they do not typically work with MPI very 

much.  

4. Counting edits to files that contained MPI calls will 
overestimate MPI. Edits done to files that contain MPI may not 
necessarily be related to MPI-related issues. For example, a 
developer may edit a routine that has one MPI call within it, 
but the edits are completely independent of the MPI call, such 

as modifying DO loop indices above the call.  

VI. THREATS TO VALIDITY 

There are numerous threats to validity in this case study. 
The most significant threat is construct validity, the idea that 
the measures we have used do not capture the phenomenon of 
interest. Because we were not able to directly measure 
programmer time, we had to use indirect measures whose 
accuracies are unknown. For example, we do not know how 
well we can predict programmer effort from commits to the 
source code repository: a small change in a single commit may 
have come from five minutes or programming time, or may be 
the result of days of debugging. Further studies would be 
needed to evaluate how well measures such as number of 
commits or number of source lines of code correlate with the 
amount of time spent on development. Both of these measures 
are possibly influenced by the individual programmer’s coding 
style. For example, the number of commits will vary depending 
on whether the coder wants to make sure that work is saved in 
small increments or wants to ensure that code is absolutely 
correct before entering the code base. Since the amount of 
MPI-related development varies significantly by developer, as 
discussed in Section 2.4, if the programmers who work more 
on MPI happen to commit more often than those who do not, it 

could greatly skew the results of this study.  

Focusing on code that contains MPI calls may not be 
indicative of the total impact of MPI, as suggested by the 
developers in the previous section. We counted any 
modification to a file containing MPI as an “MPI issue,” but 
these modifications may not have actually touched the MPI 
calls at all. If a change involved multiple files but only a single 
file was MPI-related, then the entire change was associated 
with MPI, which may result in overestimating the impact of 
MPI. As an alternative, we could have flagged only edits to 
MPI function calls as MPI-related, but this would lead to 
underestimates because it would not consider edits that 
ultimately affect the arguments of MPI calls. It is a difficult 
problem in general to identify which edits are truly MPI-

related.  

In addition, in this study we have assumed that all MPI-
related activity is directly related to the time spent editing code. 
However, it may affect other activities as well, such as the time 
spent maintaining makefiles [22]. In addition, debugging MPI-
related algorithms often requires extensive use of scarce high-
performance systems. Furthermore, activities such as algorithm 
design cannot be captured in these types of archeological 

studies.  

Finally, there is the challenge in interpreting how the results 
of a case study might apply to other projects. In particular, this 
study has focused on a mature application during its transition 



from version 2.5 to version 3.0. We do not expect the same 
results to hold if we examined, for example, the development 

of a project working toward version 1.0.  

VII. CONCLUSION 

In this paper, we have examined the role of MPI on a large-
scale HPC code development project, and characterized the 
degree to which coding activities deal with MPI specifically. 
We addressed the issues inherent in any study of software 
engineering issues based on archaeological data by applying a 
rigorous case study methodology using triangulation: 
combining different measures to provide insight on the same 
topic. The general agreement among our measures (number of 
files, number of SLOC, number of commits, number of 
debugging activities) provides confidence that the results, 
showing that MPI-specific issues make up a small percentage 
of the overall coding activities, are indicative of real 

phenomena. 

 The implications of this are important for the HPC 
community, as these results provide some bounds on the 
amount of improvement that can be expected from next-
generation replacements for MPI. Although potentially 
significant improvements in coding effort could be achieved, at 
least in the ideal case, replacing MPI and keeping other factors 
constant should not be expected to produce increases in 
productivity on the order of 10X, the target goal envisioned by 

the DARPA HPCS program [10].  

 As we mentioned above, these findings are based on 
experiences on a single, mature system and should not be 
extrapolated for all potential MPI applications. Additional case 
studies would be useful, which could quantify the impact of 
MPI and its use on other real-life HPC codes. We hope that 
such work may also help disseminate best practices that have 
been found for managing the complexity and difficulty of MPI 

and increase team productivity. 
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