
The role of MPI in development time: a case study

Lorin Hochstein

USC Information Sciences Institute

lorin@east.isi.edu

Forrest Shull

Fraunhofer Center Maryland

fshull@fc-md.umd.edu

Lynn B. Reid

University of Chicago

lynnreid@flash.uchicago.edu

Abstract— There is widespread belief in the computer science

community that MPI is a difficult and time-intensive approach to

developing parallel software. Nevertheless, MPI remains the

dominant programming model for HPC systems, and many

projects have made effective use of it. It remains unknown how

much impact the use of MPI truly has on the productivity of

computational scientists.

In this paper, we examine a mature, ongoing HPC project, the

Flash Center at the University of Chicago, to understand how

MPI is used and to estimate the time that programmers spend on

MPI-related issues during development. Our analysis is based on

an examination of the source code, version control history, and

regression testing history of the software. Based on our study, we

estimate that about 20% of the development effort is related to

MPI. This implies a maximum productivity improvement of 25%

for switching to an alternate parallel programming model.

Keywords: MPI, debugging, effort, productivity, case study

I. INTRODUCTION

Developing software to run on high-performance
computing (HPC) systems is widely regarded as a difficult
problem [3, 14, 16]. MPI [24], which is the dominant parallel
programming model for writing software for HPC systems, has
been identified as a major factor in the difficulty of developing
HPC codes. Many parallel programming models (e.g., UPC [8],
StarP [6], Chapel [5], X10 [7]) and frameworks (e.g., POOMA
[30], Cactus [15], Sierra [11], Charm++ [21]) have been
developed with the goal of improving the productivity of
computational scientists by simplifying the task of developing

parallel code that runs efficiently on large-scale HPC systems.

Previously, we have examined the impact of using MPI
versus other parallel programming models through controlled
experiments using graduate students as subjects solving toy
problems [18, 19, 20]. In this paper, we present a study that
examines the effects of MPI on programmer effort in the

context of a real, large-scale HPC software project.

In particular, we are interested in understanding how MPI is
used in the context of a larger project with a team of
developers, and estimating its impact on a mature, ongoing
software development environment. We want to understand
how much of the actual software development of a larger
project genuinely involves MPI once the project is at a stage

where it is being used to do real science.

To address these questions, we have performed a case study
[32] of the Flash Center at the University of Chicago. Such
studies are increasingly being used to study HPC development
time issues [4]. By focusing on an in-depth analysis of a single
project, we hope to gain insights into the software development
process of computational scientists and provide initial estimates
on the impact of MPI that will serve as a starting-off point for

future studies.

A. Background on the Flash Center

The goal of the Flash Center is to study thermonuclear
flashes, events of rapid or explosive thermonuclear burning that
occur on the surfaces and in the interiors of compact stars.
Hosted at the University of Chicago, the Flash Center is one of
the five original ASC-Alliance centers [17], started around
1997 and funded by the National Nuclear Security
Administration. These centers are provided access to
unclassified HPC resources that are owned by the Department

of Energy.

To conduct this research, the Flash Center has developed
FLASH, a modular and parallelized simulation code [13]. Of
the code bases at the five original ASC-Alliance centers, the
FLASH code is the largest and has the most number of external
users. FLASH is an MPI-based, coupled, multi-physics
application, written in FORTRAN and C. At the time this study
was conducted, the Flash Center was in the process of
developing a new version of FLASH (3.0) as well as

maintaining a stable version for production work (2.5).

B. Prior beliefs

While this case study is largely exploratory, we did have
several prior beliefs about MPI usage going into this study.
MPI incurs large up-front costs, but after the initial
development, we expected the maintenance costs due to MPI to
be much less, because of the use of abstraction in the code to
isolate the low-level communication details. Our previous
studies have shown that larger HPC projects build a framework
layer on top of MPI so that they do not have to modify as much
MPI code over time [17]. We expected MPI usage to be
compartmentalized in terms of code (i.e., MPI calls are not
evenly distributed across the code base but are organized
together) and in terms of developers (some developers may
work on MPI-related code, but others may not touch MPI code
at all). We also expected that only a small fraction of the MPI

library would be used in practice.

This research was performed under the DARPA HPCS project under Air

Force grant FA8750-05-1-0100 to the University of Maryland. The FLASH

code is supported by the U.S. Department of Energy under Grant No.

B523820 to the Center for Astrophysical Thermonuclear Flashes at the

University of Chicago. The PARAMESH software described in this work was

developed at the NASA Goddard Space Flight Center and Drexel University

under NASA's HPCC and ESTO/CT projects and under grant NNG04GP79G
from the NASA/AISR project.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SC2008 November 2008, Austin, Texas, USA 978-1-4244-2835-9/08 $25.00 ©2008 IEEE

C. How analysis was done

We have applied an archeological approach [27], analyzing
data that is generated naturally by the scientists as they develop

the software. The three primary sources of data we used were:

• Source code

• Version control repository

• Regression testing results

The Flash Center project uses Subversion
1
 [28] for doing

version control. This repository maintains a history of all
changes to the code base. In addition, the Flash Center has
developed a regression testing system called FlashTest. Each
night, FlashTest executes numerous tests of FLASH-related
code on multiple architectures and multiple compilers.
FlashTest maintains a history of which tests passed and failed,

accessible over a web interface.

The study described in this report analyzed repository data
from 02/22/2005 – 01/27/2008 and regression testing data from
11/08/2006 – 01/27/2008. To analyze the source code, we used
SCLC-UH

2
, which we modified slightly to deal with FLASH-

specific files.

D. Scope of FLASH

Table I shows the size of the FLASH code base in terms of
source lines of code (SLOC), which counts all lines in a file
except for blanks and comments. The FLASH code is roughly
430 KSLOC, and is a combination of FORTRAN 77/90 (87%)
and C (7%). The rest consists primarily of setup scripts,
including FLASH-specific configuration files, FLASH-specific
parameter files, makefiles, Python scripts, Perl scripts, and
shell scripts. This count only includes the code in the “source”
directory. It excludes various other software tools that are used
by the Flash Center but are not part of the main simulation,
such as the FlashView software used to visualize the output of
the FLASH code, and the FlashTest automated regression test
system. For the remainder of this paper, we focus entirely on

the FORTRAN and C files (which we refer to as source files).

Note that FLASH is not a monolithic software package.
Instead, it is designed as a collection of components. At
compile-time, the user selects which components will be used
to build an executable instance of the FLASH code. The
FLASH-specific configuration files and the Python scripts
assemble these components into a particular build of the

system.

A significant amount of the FLASH code base consists of a
reused package, PARAMESH [23, 25, 26], which handles the
adaptive mesh capabilities of the code. PARAMESH is funded
and developed separately; members of the Flash Center don’t
maintain this code directly. Since FLASH supports three
versions of the package, PARAMESH code is represented three

times in the code base.

1
 http://subversion.tigris.org

2
 http://code.google.com/p/sclc

TABLE I. SIZE OF CODE BASE

 With PARAMESH Without PARAMESH

Language SLOC % of total SLOC % of total

FORTRAN 377,149 87.2% 148,118 80.3%

C 29,058 6.7% 11,661 6.3%

Parameter

(FLASH)

16,566 3.8% 16,566 9.0%

Config

(FLASH)

3,841 0.9% 3,841 2.1%

Make 2,247 0.5% 1,403 0.8%

Perl 1,753 0.4% 1,753 1.0%

Python 1,576 0.4% 889 0.5%

Shell 475 0.1% 221 0.1%

Total 432,665 100% 184,452 100%

II. ESTIMATING THE IMPACT OF MPI

A. MPI by code volume

If the amount of time spent on MPI-related development
issues is proportional to the time spent editing code that
contains MPI, then we can estimate how much time is spent on
MPI by examining the source code alone. To estimate this, we
need an operational definition of “MPI-related code”. Here we
adopt the convention that if a file contains at least a single call

to the MPI library then it is MPI-related.

The simplest way to quantify the impact of MPI is to count
how many of the source files involve MPI-related code. As
mentioned earlier, we consider source files to be any
FORTRAN or C file. Table II shows the amount of MPI code,
considering both the number of files, and the amount of code.
Note the large impact of PARAMESH, which comprises a
sizeable fraction of the total source code, as well as containing
a great deal of the MPI code. Since PARAMESH is developed
and maintained external to the Flash Center, we believe the
“Without PARAMESH” entries are better indicators of the
amount of effort related to MPI, showing that between 7 and

15% of the code base relies on MPI.

In addition, the large difference in the percentages when
counting using number of files versus source lines of code
suggests that files that contain MPI tend to be larger. The
scatter plot in Fig. 1 confirms this and suggests that there is a
relationship between the size of a file and the number of MPI
calls within the file. A correlation analysis yields in an
R

2
=0.49, which implies that 49% of the variance in the number

of MPI calls in a file is explained by the size of the file.

TABLE II. AMOUNT OF MPI CODE

 # of files SLOC

With MPI 471 files 213,397 SLOC

 PARAMESH Total 2625 files 406,207 SLOC

 Percentage 17.9% 52.5%

Without MPI 145 files 23,335 SLOC

 PARAMESH Total 1925 files 159,779 SLOC

 Percentage 7.5% 14.6%

B. MPI by overall activity

The data from the previous section provides a sense of how
much MPI code is in the project, but it assumes that the time
spent developing MPI code is directly proportional to the
amount of MPI code. However, some code may be touched
only once, and other code may be modified many times over
the lifetime of the project. In particular, there is reason to
suspect that the MPI code typically may not be touched over
and over. If the developers have built infrastructure on top of
MPI, then all of the MPI costs may be paid up-front, and so we
might expect little MPI effort later in the lifetime of the project.
This would be a powerful argument that mature projects do not
suffer from the use of MPI because they have already

undergone the pain of MPI development. On the other hand, it
may be that this level of encapsulation is not possible to
maintain over time because the addition of unforeseen features
necessitates changes to the software architecture [12]. In the
case of FLASH, we know that one of the major features in
version 3.0 is the introduction of new algorithms related to the
adaptive mesh, which we expect to require extensive MPI

development.

An alternate way to measure the role of MPI is to measure
the amount of time that the developers spend editing MPI code.
While this is very difficult to measure directly, we can estimate
this value using the version control history of the software. As
previously mentioned, the Flash Center uses Subversion to
manage their repository. Subversion keeps a history of all
changes committed to the repository (“commits”), and assigns
a numerical ID called a revision number to each commit. Using
Subversion, it is simple to derive a changeset (the set of
modified files associated with a commit) by comparing two

successive revision numbers.

To estimate the impact of the use of MPI on development
time, we calculate the percentage of MPI-related commits. We
define an MPI commit as a changeset that contains at least one
file with at least one MPI call. Therefore, if ten files are
committed to the repository in revision 2234, and one of those
files contains an MPI call, we consider that commit to be MPI-
related. Even though some edits to files that contain MPI may
not be MPI-related, we chose this metric to obtain a reasonable
upper bound on MPI-related activity. In addition, we felt that
trying to identify whether individual changes were MPI-related
through a manual inspection of the code would be prohibitively
time-consuming and might require that the analyst have

significant understanding of the code.

Figure 1. MPI calls vs. Source Lines of Code (SLOC)

Figure 2. Number of times a file was committed versus the size of the file

In the interval of data that we analyzed, there were 4110
commits that involved source files. Of these commits, there
were 1220 MPI-related commits. Therefore, about 29.7% of
commits were MPI-related. While we expected there to be a
relationship between the size of a file and the number of
commits to a file, we saw no such correlation, as seen in Fig. 2.
Similarly, we observed no relationship between the number of
MPI calls and number of commits to a file, as shown in Fig. 3.
While there may appear to be a negative correlation in Fig. 3
by visual inspection, a linear regression analysis in all cases
yields an R

2
<.01, which suggests that there are no meaningful

linear trends in the data. Excluding the PARAMESH code

does not change the results of the analysis.

C. MPI by corrective maintenance (bugfixes)

There are several reasons why a developer may make
modification to source code. The traditional software
engineering literature distinguishes between four kinds of

software maintenance [29]:

• corrective: fixing defects (i.e., bugs)

• adaptive: adapting software to a new environment

(e.g., porting to new machines)

• perfective/enhancement: adding new features

• preventative: reorganizing the code to simplify

future changes

Using data from the FlashTest regression test database, we
estimated the activity related to corrective maintenance. This
database indicates which regression tests passed and failed on

which days. Fig. 4 shows the number of regression tests

passing (green) and failing (red) over time.

If we consider that regression test X failed on 03/26/07 and
passed on 03/27/07, then we can assume that the developers
modified the code to fix the test on 03/27/07. In FLASH, each
regression test is associated with a set of directories that
contain the source file used to build the test. We can make an
educated guess about which changes on 03/27/07 were
associated with fixing that test by looking at all of the commits
on that day that involved files in the directories associated with

regression test X.

In the data, we observed 3641 incidents where a regression
test was broken on one day and fixed on the next day. Of these,
we were able to associate 1850 of these with commits to source
files, which is about half. In the other cases, we must assume
that the regression test was fixed by some means other than
modifying a source file, such as a scientist approving new
results. In some cases, multiple commits were associated with a

particular fix of a regression test.

Figure 3. Number of Commits vs. MPI calls contained in the file

TABLE III. COMMITS RELATED TO BUG-FIXING

 # of commits

Non-MPI 2366 (69.9%)

MPI 1021 (30.1%)

Total 3387 (100%)

Table 3 summarizes the results of this analysis. Based on
these results, we estimate about 30% of the activity related to
fixing bugs involved MPI code. This is consistent with the
results from Section IIB, and suggests that bug-fixing activity
does not look different from the other forms of development

activity with respect to how much of it involves MPI.

D. Distribution of effort across developers

Large HPC projects such as FLASH require multiple
developers. We expect that the amount of MPI-related work
will not be distributed evenly across the developers. At a
coarse-grained level, we can see this division of labor in the
Flash Center, as it is divided up into distinct groups (e.g.
astrophysics, basic physics, computational physics and
validation), and it is the responsibility of the Flash Code Group
to maintain the software. This group is much more involved in
modifying MPI code than any of the other groups. Here, we are

concerned with variation within the Code Group.

As in Section IIB, we use commits as an estimate of the
time spent on editing MPI-related code. Table IV shows
commit activity for the ten developers who had the highest
number of commits to source code. The table shows the
number of commits to source code (raw, and as a percentage of
the total), the number of commits that involved at least one
MPI-related file (raw, and as a percentage of total), and an
estimate of how much time each developer spends on MPI-
related issues based on this commit data. The median time
spent in MPI-related development is 17.5%, with eight out of
the ten developers spending less than 29.1% of their time on
MPI-related issues. Note that developers H and I spend over

half of their time on MPI-related issues.

TABLE IV. COMMITS ACROSS DEVELOPERS

Developer # of source

commits

of MPI commits % MPI-related

development

A 666 (16.2%) 112 (12.3%) 16.8%

B 630 (15.3%) 110 (12.1%) 17.5%

C 557 (13.6%) 162 (17.9%) 29.1%

D 484 (11.8%) 81 (8.9%) 16.7%

E 358 (8.7%) 36 (4.0%) 10.1%

F 286 (7.0%) 43 (4.7%) 15.0%

G 246 (6.0%) 41 (4.5%) 16.7%

H 241 (5.9%) 122 (13.5%) 50.6%

I 115 (2.8%) 81 (8.9%) 70.4%

J 102 (2.5%) 19 (2.1%) 18.6%

Total 4110 1220

III. HOW MPI IS USED IN CODE

A. Distribution of MPI code

In addition to how much time is spent on MPI-related
issues, we are also interested in understanding how MPI is used
throughout FLASH. Fig. 5 shows a visual representation called
a treemap [31] of the source code. Each box represents a source
file. The size of the box is proportional to the number of source
lines of code (SLOC), and the directories are represented as
enclosing boxes, with files in the same directory appearing in
the same box. The color indicates the number of MPI calls:
bright green indicates many calls (max=88), and darker
indicates fewer calls (min=0). The color is proportional to the
logarithm of the number of MPI calls to increase the visibility
of files that have small but non-zero number of calls. The three
versions of PARAMESH are indicated with orange rectangles.
From this plot, it is evident that most of the MPI-related code is

contained within PARAMESH, as suggested by Table II.

Fig. 6 shows the same data without the PARAMESH code.
The color scale has changed, as the maximum number of MPI
calls in a file is 35. We can see in this figure that the MPI-
related files in the non-PARAMESH code are scattered about

the code base.

B. Use of MPI functions

While fully functional MPI programs can be written with
six basic functions (MPI_Init, MPI_Finalize,
MPI_Comm_Size, MPI_Comm_Rank, MPI_Send,
MPI_Recv), the MPI 1.1 standard [24] defines 215 separate
functions. We wanted to understand how extensively the

FLASH code used the MPI library.

Figure 4. Regression tests passing (green) and failing (red)

Figure 5. Treemap of source, highlighting MPI calls. PARAMESH directories outlined in orange

Figure 6. Treemap of source, highlighting MPI calls, without PARAMESH node

The entire FLASH code makes use of 57 MPI functions,
which represents 27% of the full range of available functions.
The distribution of MPI function calls is shown as a Cleveland
dot plot [9] in Fig. 7. The large numbers of barriers in the code
are mostly PARAMESH-related, in either the PARAMESH
files or in test files that call PARAMESH code

3
. We also note

that FLASH uses more of the MPI library than we expected,
although many functions are used only once. The MPI calls
appear to have a Pareto distribution, as 80% of the total number
of MPI function calls are due to 23% of the MPI functions in

the code.

3
 In the most recent version of PARAMESH, all barriers have

been removed.

If we exclude the PARAMESH code in our analysis, we see
that FLASH makes use of 45 MPI functions and is dominated
by barriers and allreduce. Here the distribution of MPI calls
across functions is more evenly distributed, as 80% of the calls

are due to 40% of the functions.

IV. DISCUSSION

Table V summarizes the estimates of MPI-related activity

using the five different estimates we examined in this paper.

Figure 7. Frequency of MPI calls

TABLE V. ESTIMATES OF MPI-RELATED TIME

of files (without PARAMESH) 7.5%

SLOC (without PARAMESH) 14.6%

Activity (commits) 29.7%

Debugging activity 30.1%

Median developer activity 17.5%

This gives us an estimate of the percentage of work spent
on MPI on the order of 10-30%, with a mean of about 20%. Let
us assume that an alternative to MPI could completely
eliminate the need for all of this development activity, and
would have no impact on any other aspect of the project such
as program performance. By Amdahl’s Law [1], this implies a

maximum programmer productivity increase of

1

1 0.2
=1.25

which gives an upper bound on productivity improvement
of an MPI replacement at about 25%. Given the risks
associated with adopting a new technology, and the startup
costs associated with adopting a new technology, it is
unsurprising that mature HPC projects such as the Flash Center
would be reluctant to experiment with new parallel
programming technologies that promise large boosts in

programmer productivity [2].

The frequency and distribution of MPI function calls in
FLASH suggests that the MPI code mostly uses only a small
number of MPI function calls and is mostly compartmentalized
to within certain subsystems, particularly those related to the
mesh. Despite this, we do see many functions with a very small
number of MPI function calls scattered about the code, and we

see many MPI functions that are used very infrequently.

V. DISCUSSION WITH DEVELOPERS

To cross-check our results, we asked the members of the
Flash Center Code Group about whether they felt the results
were consistent with their experience. The group expressed that
the figure of 20% of code-development effort being devoted to
MPI is too high, and several people guessed that it would be
closer to 10%. The developers attributed the discrepancy to

four factors:

1. Most of the MPI-related calls are found in libraries that
were not developed by Flash members. While the developers
may make changes to routines that call these libraries, but they

don’t actually write the MPI code themselves.

2. The effort of changes to the PARAMESH library will be
over-estimated because multiple PARAMESH versions are
supported. For example, when working on a change in
PARAMESH 3 calls, nearly the exact same change will have to
be made for the PARAMESH 2 calls, and possibly

PARAMESH 4.

3. The study was performed during an atypical period.
During the particular time period that the study was conducted,
there were some efforts to develop new parallel algorithms.
However, historically, the parallel algorithms are confined to
external libraries. While everybody in the group needs to be

aware of MPI issues, they do not typically work with MPI very

much.

4. Counting edits to files that contained MPI calls will
overestimate MPI. Edits done to files that contain MPI may not
necessarily be related to MPI-related issues. For example, a
developer may edit a routine that has one MPI call within it,
but the edits are completely independent of the MPI call, such

as modifying DO loop indices above the call.

VI. THREATS TO VALIDITY

There are numerous threats to validity in this case study.
The most significant threat is construct validity, the idea that
the measures we have used do not capture the phenomenon of
interest. Because we were not able to directly measure
programmer time, we had to use indirect measures whose
accuracies are unknown. For example, we do not know how
well we can predict programmer effort from commits to the
source code repository: a small change in a single commit may
have come from five minutes or programming time, or may be
the result of days of debugging. Further studies would be
needed to evaluate how well measures such as number of
commits or number of source lines of code correlate with the
amount of time spent on development. Both of these measures
are possibly influenced by the individual programmer’s coding
style. For example, the number of commits will vary depending
on whether the coder wants to make sure that work is saved in
small increments or wants to ensure that code is absolutely
correct before entering the code base. Since the amount of
MPI-related development varies significantly by developer, as
discussed in Section 2.4, if the programmers who work more
on MPI happen to commit more often than those who do not, it

could greatly skew the results of this study.

Focusing on code that contains MPI calls may not be
indicative of the total impact of MPI, as suggested by the
developers in the previous section. We counted any
modification to a file containing MPI as an “MPI issue,” but
these modifications may not have actually touched the MPI
calls at all. If a change involved multiple files but only a single
file was MPI-related, then the entire change was associated
with MPI, which may result in overestimating the impact of
MPI. As an alternative, we could have flagged only edits to
MPI function calls as MPI-related, but this would lead to
underestimates because it would not consider edits that
ultimately affect the arguments of MPI calls. It is a difficult
problem in general to identify which edits are truly MPI-

related.

In addition, in this study we have assumed that all MPI-
related activity is directly related to the time spent editing code.
However, it may affect other activities as well, such as the time
spent maintaining makefiles [22]. In addition, debugging MPI-
related algorithms often requires extensive use of scarce high-
performance systems. Furthermore, activities such as algorithm
design cannot be captured in these types of archeological

studies.

Finally, there is the challenge in interpreting how the results
of a case study might apply to other projects. In particular, this
study has focused on a mature application during its transition

from version 2.5 to version 3.0. We do not expect the same
results to hold if we examined, for example, the development

of a project working toward version 1.0.

VII. CONCLUSION

In this paper, we have examined the role of MPI on a large-
scale HPC code development project, and characterized the
degree to which coding activities deal with MPI specifically.
We addressed the issues inherent in any study of software
engineering issues based on archaeological data by applying a
rigorous case study methodology using triangulation:
combining different measures to provide insight on the same
topic. The general agreement among our measures (number of
files, number of SLOC, number of commits, number of
debugging activities) provides confidence that the results,
showing that MPI-specific issues make up a small percentage
of the overall coding activities, are indicative of real

phenomena.

 The implications of this are important for the HPC
community, as these results provide some bounds on the
amount of improvement that can be expected from next-
generation replacements for MPI. Although potentially
significant improvements in coding effort could be achieved, at
least in the ideal case, replacing MPI and keeping other factors
constant should not be expected to produce increases in
productivity on the order of 10X, the target goal envisioned by

the DARPA HPCS program [10].

 As we mentioned above, these findings are based on
experiences on a single, mature system and should not be
extrapolated for all potential MPI applications. Additional case
studies would be useful, which could quantify the impact of
MPI and its use on other real-life HPC codes. We hope that
such work may also help disseminate best practices that have
been found for managing the complexity and difficulty of MPI

and increase team productivity.

ACKNOWLEDGMENT

The authors gratefully acknowledge the help of the Flash
Center Code Group, without whom this work would not have

been possible.

REFERENCES

[1] G.M. Amdahl, “Validity of the single-process approach to achieving

large scale computing capability”, AFIPS Spring Joint Computer
Conference, 1967, Atlantic City, New Jersey

[2] V. R. Basili, J. C. Carver, D. Cruzes, L. M. Hochstein, J. K.

Hollingsworth, F. Shull, and M. V. Zelkowitz, “Understanding the high
performance computing community: A software engineer’s perspective”,

IEEE Software, July/August 2008.

[3] M. R. Beinoff and E. D. Lazowska, "Computational science: Ensuring
America's competitiveness / President's Information Technology

Advisory Committee (PITAC)," National Coordination Office for
Information Technology Research & Development, Arlington, VA 2005.

[4] J. C. Carver, R. P. Kendall, S. E. Squires, D. E. Post, “Software

development environments for scientific and engineering software: A
series of case studies”, International Conference on Software

Engineering, pp.550-559, May 2007.

[5] B. L. Chamberlain, D. Callahan, H. P. Zima. “Parallel programmability

and the Chapel language”. International Journal of High Performance
Computing Applications, Vol. 21, No. 3, pp291-312, August 2007.

[6] R. Choy and A. Edelman, “MATLAB*P 2.0: A unified parallel
MATLAB”, MIT DSpace, Computer Science collection, January 2003.

[7] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K.

Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-oriented
approach to non-uniform cluster computing”, 20th annual ACM

SIGPLAN Conference on Object-oriented Programming, Systems,
Languages and Applications (OOPSLA ‘05), 2005.

[8] W.W. Carlson, D.E. Culler, K.A. Yellick, E. Brooks and K. Warren,

“Introduction to UPC and language specification”, Center for
Computing Sciences Technical Report, CCS-TR-99-157, May 1999.

[9] W. S. Cleveland, "Graphical methods for data presentation: Full scale

breaks, dot charts, and multibased logging," The American Statistician,
Vol. 38, November 1984.

[10] J. Dongarra, R. Graybill, W. Harrod, R. Lucas, E. Lusk, P. Luszczek, J.

McMahon, A. Snavely, J. Vetter, K. Yelick, S. Alam, R. Campbell, L.
Carrington, T.-Y. Chen, O. Khalili, J. Meredith, and M. Tikir, "

DARPA's HPCS program: History, models, tools, languages," in
Advances in Computers, Vol. 72, Elsevier, June 2008.

[11] H.C. Edwards and J. R. Stewart. “Sierra, a software environment for

developing complex multiphysics applications”. In K. J. Bathe, editor,
Computational Fluid and Solid Mechanics. Proc. First MIT Conf., pp

1147-1150, Elsevier, 2001.

[12] S. G. Eick, T. L. Graves, A. F.Karr, J. S. Marron, A. Mockus, "Does

code decay? Assessing the evidence from change management data ,"
IEEE Transactions on Software Engineering, Vol. 27, No.1, pp.1-12, Jan

2001

[13] B. Fryxell, K. Olson, P. Ricker, F.X. Timmes, M. Zingale, D.Q. Lamb,
P. MacNeice, R. Rosner, J.W. Truran, and H. Tufo, “FLASH: An

Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical
Thermonuclear Flashes”, The Astrophysical Journal Supplement Series,

Vol.131, Iss. 1, pp. 273-334, Nov 2000.

[14] S. L. Graham, M. Snir, and C. A. Patterson, "Getting up to speed: The
future of supercomputing," National Academies Press, 2004.

[15] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel, and

J. Shalf. “The Cactus framework and toolkit: design and applications,”
Vector and Parallel Processing - VECPAR 2002, 5th International

Conference. Springer, 2003.

[16] Federal plan for high-end computing: Report of the high-end computing
revitalization task force (HECRTF), May 10, 2004.

[17] L. Hochstein and V. R. Basili, "The ASC-Alliance projects: A case

study of large-scale parallel scientific code development," IEEE
Computer, Vol. 41, March 2008.

[18] L. Hochstein, J. Carver, F. Shull, S. Asgari, V. R. Basili, J.
Hollingsworth, and M. Zelkowitz, "HPC programmer productivity: A

case study of novice HPC programmers," ACM/IEEE Conference on
Supercomputing (SC ’05), 2005.

[19] L. Hochstein, T. Nakamura, V. R. Basili, S. Asgari, M. V. Zelkowitz,

Jeffrey K. Hollingsworth, Forrest Shull, Jeffrey Carver, Martin Voelp,
Nico Zazworka, and Philip Johnson, “Experiments to Understand HPC

Time to Development”, CTWatch Quarterly, Vol 2, No. 4A, November
2006.

[20] L. Hochstein, V. Basili, U. Vishkin, and J. Gilbert, “A pilot study to

compare programming effort for two parallel programming models”,
Journal of Systems and Software, in press.

[21] L. V. Kale and S. Krishnan, “Charm++: parallel programming with

message-driven objects,” G.V. Wilson, P. Lu (Eds.), Parallel
Programming Using C++; MIT Press, Cambridge, MA, pp. 175–213,

1996.

[22] G. Kumfert, and T. Epperly, “Software in the DOE: The Hidden
Overhead of ‘The Build’”, Lawrence Livermore National Laboratory

Technical Report, UCRL-ID-147343, Feb 28, 2002.

[23] P. MacNeice, K. M. Olson, C. Mobarry, R. deFainchtein, and C. Packer,
"PARAMESH : A parallel adaptive mesh refinement community

toolkit.", Computer Physics Communications, Vol. 126, pp.330-354,
2000.

[24] Message Passing Interface Forum. MPI: A Message Passing Interface

Standard, Version 1.1, June 1995.

[25] K. Olson and P. MacNeice, "An Over of the PARAMESH AMR

Software and Some of Its Applications",in Adaptive Mesh Refinement-
Theory and Applications, Proceedings of the Chicago Workshop on

Adaptive Mesh Refinement Methods, Series: Lecture Notes in
Computational Science and Engineering, vol. 41, eds. T. Plewa, T.

Linde, and G. Weirs, Springer, Berlin, 2005.

[26] K. Olson, "PARAMESH: A Parallel Adaptive Grid Tool", in Parallel
Computational Fluid Dynamics 2005: Theory and Applications:

Proceedings of the Parallel CFD Conference, College Park, MD, U.S.A.,
eds. A. Deane, A. Ecer, G. Brenner, D. Emerson, J. McDonough, J.

Periaux, N. Satofuka, and D. Tromeur-Dervout, Elsevier, 2006.

[27] D. E. Perry, N. A. Staudenmayer, and L. G. Votta, "Understanding and
improving time usage in software development," in Software Process.

Vol. 4, A. Fuggetta and A. Wolf, Eds.: John Wiley and Sons, 1996.

[28] C. Pilato, B. Collins-Sussman, B. Fitzpatrick, Version Control with

Subversion, O’Reilly Media, 2008.

[29] R.S. Pressman, Software engineering: a practitioner’s approach,

McGraw-Hill, 2001.

[30] J.V.W. Reynders, P.J. Hinker, J.C. Cummings, S.R. Atlas, S. Banerjee,
W.F. Humphrey, S.R. Karmesin, K. Keahy, M. Srikant, and M.

Tholburn, “POOMA: A framework for scientific simulation on parallel
architectures”, in Parallel Programming for C++, pp. 547-558, MIT

Press, 1996.

[31] B. Shneiderman, "Tree visualization with tree-maps: A 2-d space-filling
approach," ACM Transactions on Graphics., Vol. 11, pp. 92-99, 1992.

[32] R. K. Yin, Case study research: Design and methods, Third ed.: Sage

Publications, 2002.

