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High Productivity Computing Systems and
the Path Towards Usable Petascale Computing

High Performance Computing has seen extraordinary growth in peak performance from 
Megaflops to Teraflops in the past decades.  This increase in performance has been accompanied 
by a large shift away from the original national security user base of the 1970s and 1980s to 
more commercially oriented applications (e.g., bioinformatics and entertainment).  In addition, 
there has been a significant increase in the difficulty of using these systems, which is now the 
domain of highly specialized experts.  In response to these trends the DARPA High Productivity 
Computing Systems (HPCS) program was established to produce a new generation of economi-
cally viable, high productivity computing systems for the national security and for the industrial 
user communities.  The primary technical goals of the program are to produce petascale com-
puters that can better run national security applications and are usable by a broader range of 
scientists and engineers.  The HPCS program is fostering many technological innovations, and 
two of the more noteworthy include: the concept of a “flatter” memory hierarchy (to accelerate 
a whole new set of applications) and high level programming languages (to allow a new set of 
users to take advantage of petascale systems).

Beyond just producing petascale systems that are easier to use, the HPCS program has also 
funded a team of researchers to explore how to better measure productivity.  This special double 
issue of CTWatch Quarterly features 17 articles on the topic written by folks who have devoted 
themselves to these questions for the past few years.  The articles are broken down into two 
groups.  The first group “User Productivity Challenges” consists of a series of broader and more 
easily accessible articles that seek to highlight the user experience with HPC Technologies and 
the current issues therein.  The second group “System Productivity Technologies” is made up 
of more deeply technical articles that describe specific technologies for enhancing productivity. 
Although CTWQ is not a traditional technical journal and would not normally carry articles 
in the second group, we felt it was important to try to present a more complete and balanced 
picture of the HPCS Productivity effort and give it the kind of wide exposure that CTWQ’s 
on-line publication model makes possible.

 
The articles deal with the question of productivity from a number of perspectives.  Tools are 

then provided for folks who want to look at productivity from an organizational perspective, 
from an individual programmer perspective, or from the perspective of a hardware or software 
innovator.  From the technology innovator’s perspective I think we have provided two par-
ticularly useful tools.  The HPC Challenge benchmarks developed under HPCS is a suite of 
benchmarks that allows hardware designers to get credit for innovating above and beyond the 
design space defined by the Top500 benchmark.  The HPC software development measurement 
system developed under HPCS allows software designers to conduct detailed experiments with 
programmers and determine precisely where the users spend their time.

The productivity of HPC users intrinsically deals with some of the brightest people on 
the planet, solving very complex problems, using the most complex computers in the world.  
Anyone who truly wants to get insight into such a complex situation must be prepared to invest 
some time in the endeavor.  However, I am confident that those who do will find the effort 
rewarding.

Jeremy Kepner 
MIT Lincoln Laboratory 
 

This work is sponsored by the Defense Advanced 
Research Projects Administration under Air Force 
Contract FA8721-05-C-0002.  Opinions, interpreta-
tions, conclusions, and recommendations are those 
of the author and are not necessarily endorsed by the 
United States Government.
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Making the Business Case for High Performance 
Computing: A Benefit-Cost Analysis Methodology

Albert Reuther 
MIT Lincoln Laboratory

Suzy Tichenor 
Council on Competitiveness 

1 ROI can be captured with a variety of corporate 
finance techniques, including benefit-costs ratio 
(BCR), net present value (NPV), and internal rate of 
return (IRR).

2 http://www.compete.org/hpc/

3 “Partnering for Prosperity: Harnessing Our HPC 
Assets for Competitive Strength.” Two Council on 
Competitiveness studies, both completed in January 
2006: “Industrial Partnerships through the National 
Science Foundation’s Supercomputing Resources,” and 
“Industrial Partnerships through the NNSA’s Academic 
Strategic Alliance Program.”  
Available at: http://www.compete.org/hpc/

High performance computing (HPC), also known as supercomputing, makes enormous 
contributions not only to science and national security, but also to business innovation and 
competitiveness—yet senior executives often view HPC as a cost, rather than a value investment.  
This is largely due to the difficulty businesses and other organizations have had in determining 
the return on investment (ROI)1 of HPC systems.  

Traditionally, HPC systems have been valued according to how fully they are utilized (i.e., 
the aggregate percentage of time that each of the processors of the HPC system is busy); but this 
valuation method treats all problems equally and does not give adequate weight to the problems 
that are most important to the organization.  With no ability to properly assess problems having 
the greatest potential for driving innovation and competitive advantage, organizations risk pur-
chasing inadequate HPC systems or, in some cases, foregoing purchases altogether because they 
cannot be satisfactorily justified.  

This stifles innovation within individual organizations and, in the aggregate, prevents the 
U.S. business sector from being as globally competitive as it could and should be.  The ground-
breaking July 2004 “Council on Competitiveness Study of U.S. Industrial HPC Users,”2 spon-
sored by the Defense Advanced Research Projects Agency (DARPA) and conducted by market 
research firm IDC, found that 97% of the U.S. businesses surveyed could not exist, or could 
not compete effectively, without the use of HPC.  Recent Council on Competitiveness studies 
reaffirmed that HPC typically is indispensable for companies that exploit it.3  

It is increasingly true that to out-compete, companies need to out-compute.  Without a more 
pragmatic method for determining the ROI of HPC hardware systems, however, U.S. companies 
already using HPC may lose ground in the global competitiveness pack.  Equally important, 
companies that have never used HPC may continue to miss out on its benefits for driving inno-
vation and competitiveness.

To help address this issue, we present an alternative to relying on system utilization as a 
measure of system valuation, namely, capturing the ROI by starting with a benefit-cost ratio 
(BCR) calculation.  This calculation is already in use at the Massachusetts Institute of Technology, 
where it has proven effective in other contexts.

HPC and Business Competitiveness

Alongside theory and experimentation, modeling and simulation using HPC has become 
the third leg of science and industrial design engineering.  Industrial and other business firms 
are driven by external competition in a never-ending race to be first to market with the best 
products.  The 2004 Council on Competitiveness study mentioned earlier also found that in 
these battles for global market supremacy, more-capable HPC resources often translate into 
faster time-to-market (in some cases more than 50% faster), reduced costs, and superior product 
quality.  
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Businesses use HPC systems (supercomputers) to design the cars we drive and the aircraft 
we fly in, to find and help extract new energy sources, to forecast severe weather, to discover new 
life-saving medicines and to safeguard our national security.  

These benefits of HPC are often substantial: 

• In 1980, Boeing tested 77 wings for the 767. Thanks primarily to HPC simulation, Boeing 
needed to test only 11 wings for the 7E7 Dreamliner series.  

• Entertainment leader DreamWorks Animation SKG has leveraged supercomputing 
capabilities to set a whole new standard for animated films.  As a result, the U.S. animation 
industry leads the world in market share. 

• At The Proctor & Gamble Company, HPC simulations are used for everything from testing 
the absorbency of the materials in Pampers‚ diapers, to engineering bleach containers that 
minimize weight and maximize resistance to breakage, to designing the right geometric 
shape for Pringles‚ potato chips that allow the chip to drop gently into a container rather 
than fly off the conveyor belt.  

• Wal-Mart relies heavily on HPC for supply chain management, including daily data 
analysis to determine what to stock in every Wal-Mart store worldwide, as well as for 
ergonomics—right down to turning on the lights in all the stores.

• Recent advances in HPC technology were crucial for enabling Chevron and two of its 
partners to discover a new field in Gulf of Mexico deepwater that could yield 3-15 billion 
barrels of oil, boosting U.S. reserves by up to half.   

The story doesn’t end there. Going forward, America’s technological visionaries foresee 
equally dramatic advances if massive improvements in HPC power can be made available: 

• HPC could revolutionize medical procedures and devices as well as product safety for 
a variety of consumer products by creating virtual humans of all shapes and ages. For 
example, the current generation of crash test dummy, while significantly improved over 
earlier generations, is essentially composed of metal frames with sophisticated sensors, 
lacking the ability to assess the impact of collisions on muscle, bone, tendons and soft 
tissues. 

• HPC could increase oil recovery by 50-75% with more accurate seismic modeling of oil 
reservoirs. Currently, the uncertainties in the seismic models can lead to errors in drilling 
that both decrease output and increase environmental impact.

• HPC could create designer catalysts that selectively interact with the molecules in crude 
oil, for example, allowing greater production of high-value products in the oil refining 
process at lower costs. Moreover, specialized catalysts would convert more of the “waste” 
in low-grade crude to usable products while simultaneously decreasing the impact on the 
environment of disposing of unusable product. 

• HPC could be used to model the spread of epidemics, enabling public health officials to 
intervene appropriately to halt the expansion of life-threatening diseases.  

• HPC offers the potential for real time analysis of data traffic flow through thousands 
of miles of communications links. Increased computing power could achieve real time 
monitoring of the Internet and sense and avert denial of service and other types of attacks.  
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Barriers to HPC Use in the Private Sector

Council on Competitiveness research has identified three principal barriers inhibiting more 
widespread use of HPC.  Educational and training hurdles (shortage of computational scientists) 
and technical obstacles (e.g., legacy codes need updating, new code development lags, growing 
performance gap between fast processors and other system technologies) are largely external to 
any one organization, although all of them affect the cost and ease of HPC use by the private 
sector.  Within corporations, however, business strategies and decision-making processes can be 
a more significant obstacle to acquiring or accessing HPC tools.  

In the boardrooms of many American companies, HPC isn’t seen as an innovation edge, but 
rather as a cost of doing business—an enormous “hole in the pocket.”  And when investment 
options are being considered, it is often easier to get management approval for one that will 
minimize or reduce costs in the short tem versus an investment that has the potential to gen-
erate revenue over the longer term.   HPC often is seen as the latter.  As a result, management 
often favors “cheaper” systems and will not invest in more productive systems and the requisite 
training for personnel. For example, a $10 million investment in a high-end HPC machine to 
enable entry to a market six months early could result in $500 million of additional revenue 
in some industries, whereas a $1 million system with higher latencies and lower bandwidth 
might not be able to complete the solutions.  Yet management often selects the less expensive 
approach.

The Council’s research also found that organizations are often more limited by their budgets 
than by the computers available in the market.  The impact of this can be severe.  While some 
companies can run their existing problems on cheaper machines with faster turnaround, they 
are often unable to run new problems that lead to the breakthroughs required to maintain global 
competitiveness.  

Not surprisingly, the other key barrier mentioned by businesses was the difficulty in deter-
mining the ROI from their current or proposed HPC systems.   

Making the Business Case for HPC

One reason that many senior executives view HPC as a cost rather than a value investment 
is due to the difficulty in determining the ROI to the organization of the system. Traditionally, 
HPC systems have been valued by the usage of the system, i.e., the aggregate percentage of time 
that each of the processors of the HPC system is busy. The rationale behind this valuation is 
that a large sum of money was spent to purchase and maintain the system, and the justification 
for spending such sums is that the demand for computing on the system keeps the system busy 
close to 100 percent of the time. 

Such a valuation method encourages the HPC system owners to use a resource management 
queuing system that schedules a non-stop stream of smaller computational simulations by 
many users to keep the HPC system busy.  While this encourages utilization, it may not actually 
accommodate the most important problems facing the organization. Thus, this valuation meth-
odology may not capture the true value that the use of an HPC system would provide to the 
organization, and it may not optimize users’ needs in that it does not measure whether the 
problems most pressing for an organization’s long-term competitive edge are being addressed. 
Without considering these issues, the actual out-of-pocket cost for an HPC system may appear 

Making the Business Case for High Performance Computing: A Benefit-Cost Analysis Methodology
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unaffordable, leading an organization to forego needed hardware purchases, upgrades, or cer-
tainly “greenfield” investments in HPC systems.

An alternative to relying on system utilization as a measure of system valuation is to capture 
the ROI by starting with a benefit-cost ratio (BCR) calculation. The BCR is expressed as the 
profit or cost savings divided by the sum of the investment over a given time period. In this 
article we shall simplify the discussion by assuming that all of the evaluations are conducted 
for a one-year time period. When we assume a one-year time period, the BCR is related to the 
one-year internal rate of return (IRR) with the following formula: BCR = 1 + IRR, or IRR = BCR 
– 1. Also, a net present value (NPV) analysis can be constructed using the benefits and costs 
identified in this article.4 Naturally, all of these analyses rely on the collection of accurate data. 

When evaluating investments in HPC systems,5 the denominator of the BCR can be easy to 
find though one must make sure that all of the costs involved have been identified. However, 
the profit or cost savings due to the investment may not be nearly as easy to determine. The 
DARPA High Productivity Computing Systems (HPCS) program6 has been working on deter-
mining the factors that play into the numerator and denominator of a BCR evaluation. In an 
article from the Winter 2004 Special Edition on HPC Productivity of the International Journal of 
High Performance Computing Applications,7 the HPCS research team used productivity as their 
measure and defined it in classic economic terms as utility divided by cost. This is very similar 
to the BCR equation: 

            

BCR = 
bene�t

cost productivity = 
utility
cost

To expand on the utility (benefit) and cost for an organization, Dr. Jeremy Kepner of MIT 
Lincoln Laboratory, a HPCS Productivity Team member, developed a high performance 
productivity framework and evaluation model. The HPCS productivity model looks past the 
traditional measures of high performance computing systems such as peak floating point opera-
tions per second (flops) and system demand, since they usually do not have much influence on 
productivity. The result is the (SK)3 formulation: 

productivity
(BCR)

(time saved by users on system)
=

time to
parallelize(                 ) time to

administrate(                    )time to
train(            ) time to

launch(            ) system
cost(            )+ + + +

 
In other words, the productivity level of a high performance computing system is a function 

of the time saved by engineers and scientists in solving advanced problems, taking into account 
not only the cost of the system, but also the time required to train users on it, prepare the appli-
cation code(s) for parallel processing, launch the application(s), and administer the system. 
This formulation is intended for a research-oriented institution like a university or national 
laboratory. 

In an industry environment, where systems are used less for basic research and more for 
solving product design and development challenges (i.e., a “production” environment), the vari-
ables for determining BCR/productivity may very well be different. Rather than computing the 
time saved by users on the system, an industry user may be more concerned with the value of 
newly developed products, potential increases in market share, profits generated (or lost) using 
HPC systems, or the importance of the job to be completed (i.e., how much revenue or market 

4 For some background on using BCR, IRR, and NPV to 
evaluate projects, please refer to G. Tassey, “Method 
for Assessing the Economic Impacts of Government 
R&D,” Planning Report #03-1, National Institute of 
Science and Technology, Sept. 2003. For a through 
treatment please refer to S. Ross, R. Westerfield, and 
J. Jaffe, Corporate Finance, McGraw-Hill Irwin: New 
York, 2004.
5 The intent of these sections is not to teach a tutorial 
on corporate finance but rather to illuminate various 
ways in which the benefits and costs associated with 
evaluating investments in HPC assets can be viewed 
and analyzed. The formulas and methodologies 
suggested here are based on the experiences at MIT 
Lincoln Laboratory. Our intent is to encourage readers 
to think about how their organization values an HPC 
solution.
6 DARPA HPCS -  
http://www.darpa.mil/ipto/programs/hpcs/
7 Kepner, J. “HPC productivity model synthesis,” 
International Journal of High Performance Computing 
Applications, Vol. 18, No. 4, November 2004.
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share will the company be able to gain once this large, extremely important problem is solved). 
In the denominator, the “time to parallelize” is irrelevant because all of the parallel software 
running on the HPC system is purchased. Hence the “time to parallelize” is replaced by the “cost 
of software.” Also the launch time becomes minute in comparison to the software execution 
time. Again, we start with the basic formula: productivity (BCR) equals utility/benefit divided 
by cost. With the above changes, the new expanded BCR formulation follows. 

 

(                                   )Pro�t gained or 
maintained by project

productivity
(BCR)

=
(               )Cost of

software (             )Training
cost (            )System

cost+ + +(            )Admin
cost

In the next section, we use these two productivity (BCR) formulas with numerical examples 
to demonstrate their use. 

BCr Case Study Examples

Research Laboratory Example

At MIT Lincoln Laboratory, a federally funded research and developement center (FFRDC) 
for the Department of Defense, the research-oriented formula was used to evaluate the financial 
efficacy of a 600-processor, enterprise grid cluster solution that would be used by 200 users 
across Lincoln. The numerator value and each of the five denominator values were related to an 
average, fully burdened salary of $200,000 per year. 

• In terms of the time saved by users, a system evaluation yielded that approximately 36,000 
hours of user time would be saved by the system.8 

• The time to parallelize all of the 200 users’ algorithm and simulation code would take 
approximately 6,200 hours.

• Getting users trained on using Lincoln’s system takes about 4 hours. Therefore the time to 
train is a total of 800 hours. 

• Given a 10 second job launch time and an estimated 10,000 parallel job launches per year, 
it amounts to 27.8 hours of launch delayed that would not be experienced by serial jobs 
executed on desktops. 

• The HPC system would be administered by one system administrator or 2000 hours. 
• Buying 200 CPUs (100 dual-processor server nodes) per year with an estimated $5,000 per 

node costs $500,000. That is equivalent to 5,000 staff hours. 
Inserting these values into the BCR/productivity equation yields:

BCR = = =
[Salary] x 36000

[Salary] x (6200 + 800 + 27.8 + 2000 + 5000)
36000
14028

2.6,

IRR1year = BCR - 1 = 1.6 = 160%.

Then we can also determine the one-year IRR as 160%. When taking the full range of average 
programming rate and cost to parallelize into account they found that BCR = 2.6 to 4.6. 

Making the Business Case for High Performance Computing: A Benefit-Cost Analysis Methodology

8 The time saved by users was calculated in a very 
conservative manner: time saved = (time system is in 
use) * (average number of users) * (1 – 1 / (Average 
number of CPUs per job) ). This formula assumes that 
all jobs are fine-grained, synchronous parallel jobs; 
often parallel jobs are less synchronous and more 
coarsely grained. The last term in that expression can 
be substituted with a less conservative term such as 
log2(Average number of CPUs per job) or just Average 
number of CPUs per job. Using the latter, we have 
calculated a BCR greater than 30.
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The MIT Lincoln Laboratory High Performance Computing team has compiled many 
examples of how their users are more productive when they use their interactive, on-demand 
enterprise HPC system. For example, one of the technical staff members is designing and evalu-
ating algorithms to improve the weather radars used across the United States. When he was 
running his algorithm simulations on his very powerful desktop computer, they would execute 
in about ten hours. He was able to make adjustments or run different data sets twice a day: once 
during the business day and once overnight. He was trained to use the HPC system in a single 
morning, and he had parallelized his simulation code by the time the day was finished. His sim-
ulation on the HPC system executed in an interactive, on-demand manner on eight to sixteen 
processors and usually executed in less than an hour. That allowed him to execute between ten 
and twelve simulations per day, thereby enabling him to deliver more accurate algorithms and 
raise the level of confidence in the effectiveness of the algorithms. This translates into delivering 
much better weather radar effectiveness for his project, its sponsor, and eventually our nation. 
However, it is not the usual way in which HPC systems are used. 

Industry Example

Let us now use this formula in an industrial production example. As with the research 
example and for the sake of simplicity, we will assume a time period of one year (investment at 
the beginning of the year and benefits by the end of the year). 

We assume that an automotive firm has three high priority projects that cannot go forward 
without the purchase of an HPC system. If the HPC system is purchased, the three projects are 
very likely to be successful and are expected to bring in profits of $5.25 million, $2.0 million, 
and $4.5 million. In terms of costs:

 
• The software licenses will cost $2.5 million. 
• A forecasted 90 users will get 80 hours of training on the system and software at $120 per 

hour. 
• Ten system administrators will service the HPC system with an average annual fully 

burdened salary of $200,000. 
• The HPC system will cost $3.0 million. 

Given these estimates, we insert the values into the formula: 

 

BCR = = =
$5.25m + $2.0m + $4.5m

$2.5m x (90 + 80hours + $120/hour) + (10 x $200k) + $3.0m
$11.75m
$8.364m

1.40

IRR1year = BCR - 1 = 40%

 
From this result, the management must determine whether a one-year IRR of 40% (BCR = 

1.4) is acceptable and whether the purchase will go forward. 

These two examples demonstrate how the productivity (BCR) formulation can be used in 
different organizations. The key is to identify and estimate the benefit(s) and costs for a par-
ticular organization. 
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Making the Business Case for High Performance Computing: A Benefit-Cost Analysis Methodology

Summary

In the past several decades, HPC has made a large impact in the growth of the American 
economy, has helped build and maintain American competitiveness in the world economy, and 
has enabled many of the products and capabilities that we have today. However, Council on 
Competitiveness research has revealed that despite the opportunities to use HPC to increase 
productivity and competitiveness, many executives believe that their firms are failing to apply 
this technology as aggressively as possible. Some of the hindrances have occurred because of 
lack of talent and certain technical barriers. Another hindrance is a that many boardrooms in 
American companies see HPC systems as a cost of doing business without realizing the benefits 
that such a system can bring to the organization and the bottom line. We have presented a 
variety of benefits and costs that may be realized in organizations that purchase and use HPC 
systems. While the Research and Industry equations and examples are presented as two dis-
tinct scenarios, many actual situations may prompt a melding of the two. Overall, the examples 
show that HPC assets are not just cost, but that they actually can contribute to healthy earnings 
reports as well as more productive and efficient staff. 
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introduction
 

High performance computing, as a field, involves a great deal of interdisciplinary coop-
eration. Researchers in computer science work to push the boundaries of computational power, 
while computational scientists use those advances to achieve increasingly detailed and accurate 
simulations and analysis. Staff at shared resource centers enable broad access to cutting edge 
systems while maintaining high system utilization. 

Attempts to evaluate the productivity of an HPC system require understanding of what 
productivity means to all its users. While each of the above groups use HPC resources, their 
differing needs and experiences affect their definition of productivity. This, in turn, affects 
decisions about research directions and policies. Because so much is at stake, measuring and 
comparing productivity is not to be taken lightly. There have been many attempts to define pro-
ductivity quantitatively, for example, see Kuck1 for a definition of user productivity and Kepner2 
for a definition of the productivity of a system.   

Our approach avoids the problems involved in trying to quantify productivity and instead 
defines the productivity of a system in terms of how well that system fulfills its intended purpose. 
Certainly the intended purpose of an HPC system is not just to stay busy all the time, but instead 
to deliver scientific results. Working with the San Diego Supercomputer Center (SDSC) and 
its user community, we have analyzed data from a variety of sources, including SDSC support 
tickets, system logs, HPC developer interviews, and productivity surveys distributed to HPC 
users. In order to better understand exactly how HPC systems are being used, and where the best 
opportunities for productivity improvements are, we have compiled a list of conjectures about 
HPC system usage and productivity (each originally suggested by experienced researchers in 
HPC) and have compared these to the usage patterns and attitudes of actual users through four 
studies. The seven conjectures are as follows:

 
• HPC users all have similar concerns and difficulties with productivity. 
• Users with the largest allocations and the most expertise tend to be the most productive. 
• Computational performance is usually the limiting factor for productivity on HPC systems. 
• Lack of publicity and education is the main roadblock to adoption of performance and 

parallel debugging tools. 
• HPC programmers would require dramatic performance improvements to consider making 

major structural changes to their code. 
• A computer science background is crucial to success in performance optimization.
• Visualization is not on the critical path to productivity in HPC in most cases. 

In the discussion that follows, we evaluate each of the conjectures. After summarizing the 
data sources we used and how we collected them, we present our findings and try to clarify how 
well each of these beliefs actually stands up to the evidence. 
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Procedure 

In this study we address the above conjectures by evaluating consult tickets and job logs and 
further verifying the preliminary assessments, based on the previously mentioned means, with 
user surveys and by personal interviews of developers using current TeraGrid Sites. More in 
depth explanation of the studies conducted can be found at SDSC’s Performance Modeling and 
Characterization (PMaC) web site.3 

The initial assessment, to quantify and qualify HPC productivity, was derived from evalu-
ating the user-submitted help tickets. The ticket sampling included all help tickets submitted to 
the SDSC help desk from March 2004 to March 2006. These tickets span numerous architec-
tures. The consulting tickets enabled the identification of possible HPC resources productivity 
bottlenecks.

 Because only 307 of the 920 registered users submitted support tickets during the time span 
we investigated, it was clear that ticket analysis alone did not account for all users. Attempting 
to include a broader set of users, we looked at system job logs of the SDSC DataStar supercom-
puter,4 a 2,368-processor IBM Power4 system. We evaluated high-level trends for all 59,030 jobs 
run on the DataStar P655 nodes at SDSC from January 2003 to April 2006. The jobs ranged in 
size from 1 to 128 eight-processor nodes. 

To further address some of these questions raised in the previous two studies we embarked 
upon a survey and interviewing campaign. We developed an interview strategy based on 
available references5 and examples6 to avoid common pitfalls in design. The questions included 
a general background and experience section, a development section, and a development prac-
tices and process section. The full interview script is available on the SDSC PMaC web site.3 This 
strategy was extended to create a user survey. The survey had two goals; first, to get answers 
from questions similar to the interview script from a larger sample size, and second, to find 
potential future interview subjects for further investigation. The full survey is also available on 
the PMaC web site.3

Analysis 

The studies above identified some system and usage trends. This section draws conclusions 
about the conjectures made in the introduction section of this paper, and discusses how the 
studies influenced our understanding of, and the implications for, HPC centers and users. 

Conjecture 1: HPC users all have similar concerns and difficulties with productivity.

 While it is clear that users have a wide range of system demands, as seen in the variety of 
allocation and job sizes, it is not uncommon to assume that as long as users share a system, they 
share the same challenges staying productive. However, as details of individual usage patterns 
emerged, we found that not all users experienced the same problems with the same systems and 
tools, and some problems affected some users more than others. 

Three distinct classes of users emerged based on HPC resources utilization, project scale, 
and the problems encountered. While these classes are clearly related to allocation size, they are 
defined by characteristics of their system usage. 

What’s Working in HPC: investigating HPC User Behavior and Productivity

3 PMaC web site for productivity study materials. 
PMaC Publications. http://www.sdsc.edu/PMaC/
HPCS/hpcs_ productivity.html. Aug. 2006.

4 SDSC User Services. SDSC DataStar user guide: 
http://www.sdsc.edu/user_services/datastar/

5 Robson, C. “Tactics -the Methods of Data Collection” 
in Real World Research, Blackwell Publishing, 2002.
6 Cook, C., Pancake, C. “What users need in parallel 
tool support: Survey results and analysis,” IEEE 
Computer Society Press, pages 40– 47, May 1994.
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Marquee Users: Marquee users run at very large scale, often using the full system and 
stressing the site policies and system resources. For these reasons they will be the most affected 
by node failures and are generally unable to use the interactive nodes to debug or benefit from 
backfill opportunities to the queue. We have named this group “Marquee” users because such 
projects are often used to publicize HPC centers. 

Marquee users often have a consultant, or are the consultant, working on the application 
to improve the performance, to port to a new system or scale to larger numbers of processors. 
The marquee users are generally represented in our study through the job logs and personal 
interviews. 

Normal Users: The largest class, “Normal” users, tend to run jobs using between 128 and 
512 processors. Their problem size is not necessarily limited by the available resources of the 
systems they use. This greater flexibility in their resource usage, allows them the ability to run 
on smaller systems that may not be as heavily loaded. Normal users are less likely to have been 
forced to tune for performance optimization, or to have used performance tools. Normal users 
are generally represented in our study in the form of user surveys and job logs. 

Small Users: Small users have a minor impact on system resources, do not tend to use 
large allocations, and generally run jobs with fewer than 16 processors, which are often started 
quickly by backfilling schedulers. In general, small users are learning parallel programming, 
and their productivity challenges are more likely due to unfamiliarity with the concepts of HPC 
computing. “Small” users are generally represented in our study in the form of help tickets and 
job logs. 

Clear examples of the differences between the normal and marquee users can be seen in 
the different responses from the verbal interviews and the survey results. In some cases the 
interviewees and survey respondents were using the same systems and the same software, but 
due to different processor counts and memory requirements, their opinions of the productivity 
impact of system traits were very different. 

The interviews with SDSC performance consultants showed that memory or I/O was the 
primary bottleneck for their codes. However, 8 out of 12 of our survey respondents believed that 
processor floating-point performance was their top bottleneck. Since some survey respondents 
were using the same code as our interview subjects, we attribute this discrepancy to the scale at 
which the marquee users run. In many cases performance bottlenecks will only become apparent 
when the system resources are stressed. The survey respondents, representing our normal users, 
report standard production runs requesting 256-512 processors, while interview subjects often 
use more than 1,024 processors. 

The interactive running capabilities of a system provide another opportunity to distinguish 
user classes. Most survey respondents were able to successfully debug their codes on 1-8 pro-
cessors running for less than one hour, which is feasible on current interactive nodes. Marquee 
users, on the other hand, must submit to the batch queue and are subject to long wait times to 
run very short jobs to reproduce bugs and test fixes. The marquee users expressed their frus-
tration with the lack of on-demand computing for a large number of processors, specifically for 
debugging purposes. 

This implies that different system policies are appropriate for different users. For example, 
in various phases of a project, resource demands may vary. When major development and 
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tuning has ceased and production has begun, a policy that would allow the entire system to be 
reserved could be a major improvement to productivity. One marquee user gave the example 
that it would take a week running around the clock to get one simulation completed and that 
repeatedly waiting in the queue is wasteful and can extend this process by at least factor of four. 
In contrast, another researcher was uncomfortable with having dedicated time due to the risk 
of wasting allocation while fixing problems, preferring a high-priority queue reservation policy 
instead. System design and site policies should reflect the different types of users and stages of 
development. 

Conjecture 2: Users with the largest allocations and most experience are the most pro-
ductive. 

A common policy of HPC centers is to give preference in queue priority to jobs with higher 
node requirements, which encourages users to make full use of rare high capacity systems. 
Large users may also receive more personal attention, even to the point of having a dedicated 
consultant working on their programs. Does this conclusively imply that larger users are the 
most productive? 

Through our interviews it emerged that productivity, in terms of generating scientific results, 
is just as difficult to achieve for large users, if not more so, than for smaller users. Queue wait 
time, reliability and porting issues all cause major problems for large users. Large-scale pro-
grams often push the limits of systems and therefore run into problems not often seen at lower 
scale, such as system and code performance degradation and system reliability problems. 

Evaluating the queue based on job logs can be complicated. There are a number of factors 
that could affect queue priority. Some of the most influential variables are length of runtime, 
processor count requested, the size of a user’s unspent allocation, as well as site administrators’ 
ability to change the priority of individual jobs directly. 

Processor Count Average Median Maximum Minimum

8 8.87 0.06 858.93 0.00

64 12.64 0.45 792.33 0.00

128 24.12 2.56 752.67 0.00

256 21.13 3.51 415.69 0.00

512 19.79 3.81 266.44 0.00

1024 23.99 9.07 205.49 0.00

Table 1. Wait time of jobs 2003-06 on DataStar, in hours.

Processor Count Average Median Maximum Minimum

8 2.43 0.52 624.89 0.00

64 2.49 0.69 49.42 0.00

128 3.84 0.63 105.01 0.00

256 3.33 0.46 100.06 0.00

512 3.13 0.40 19.44 0.02

1024 2.60 0.31 18.01 0.03

Table 2. Run time of jobs 2003-06 on DataStar, in hours.

What’s Working in HPC: investigating HPC User Behavior and Productivity



��

Processor Count Average Median Maximum Minimum

8 8.02 1.15 22666.83 1.00

64 19.22 1.66 11826 1.00

128 68.71 3.31 5137.17 1.00

256 44.42 5.35 3809.40 1.00

512 53.53 6.00 3924.50 1.00

1024 90.69 11.68 2800.39 1.00

Table 3. Expansion factor for jobs 2003-06 on DataStar.

Figure 1. Run timedistribution, grouped by job size.

Figure 2. Wait time distribution, grouped by job size.
 
In support of our initial statement, Table 1 displays some trends that are not surprising. 

On average small jobs have shorter wait times. The average wait time for jobs requesting only 
one node was nine hours while the average wait time for 128 nodes (1024 processors) was 
approximately 24 hours. In contrast, the inverse trend is evident in maximum wait times; as the 
number of nodes increased, the maximum wait time decreased. The maximum wait time for a 
128 node job was 17 days and the maximum wait time for one node was 71 days. The median 
tells us a similar story to the average. The trends in run time and wait time are also visible in the 
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histograms shown in Figure 1 and Figure 2, grouped by job size. Table 2 shows statistics for the 
job run time. 

The expansion factor ((waittime + runtime) / runtime) data in Table 3 reinforces the trends 
established by the wait times and also displays how the queue favors large allocations. The 
average expansion factor increases as the number of nodes increases up to 256 processors, where 
there is a dip in the expansion factor curve. This appears to show a preference for large jobs in 
the scheduler beginning at 256 processors. On closer inspection, the trend was influenced by a 
single high priority account with a large allocation, running many jobs on 256 processors. The 
actual priority increase for “large” jobs begins at 512 processors or more. Also note the high 
expansion factor for 1024 processor runs. While it would seem to show that users running 
on large portions of the system are not very productive, we see that this effect is due to a large 
number of such jobs with very short run time. 632 of the 839 jobs that ran on 128 nodes (1024 
processors) ran for less than two hours, and most of those jobs were part of a benchmarking 
effort. The average expansion factor for jobs that were not benchmarking was 9.58, and the 
median was 10.05, which more clearly shows the scheduler favoring large jobs as intended. 

Although the analysis above does show that marquee users receive priority for using large 
portions of the system and are therefore not disproportionately hurt by queue wait time, they do 
face a serious productivity bottle-neck in the inability to get a large-enough allocation on one 
system, or on the right system for their task. Due to site policies, single-site allocations often 
have a limit. In some cases, users were forced to port codes to several systems due to allocation 
limits, resource constraints, or system and support software compatibility issues. One developer 
told us of having to port one program to four different systems during the period of one project.  
Another told us of having to port to at least two systems for an individual run to be able to 
capitalize on the different features supplied on different systems. 

Porting itself can be time consuming and difficult. We heard about the time required to com-
plete a port, ranging from less than an hour to many days, and in some cases the successful port 
was never achieved. Once the code is ported, these multi-platform scenarios tend to require 
tedious manual effort from the user to move data files around, convert formats, and contend 
with the problems of working on many sites with different policies, support, and capabilities.

Conjecture 3: Time to solution is the limiting factor for productivity on HPC systems. 

While the initial migration of a project to HPC systems is certainly due to expanding resource 
requirements, we found across all four studies that the HPC users represented in our samples 
treat performance as a constraint rather than a goal to be maximized. Code performance is very 
important to them only until it is “good enough” to sustain productivity with the allocation they 
have, and then it is no longer a priority. In economics literature, this is called satisficing,7 and 
while it is not surprising in retrospect, it is important to keep this distinction in mind when 
thinking about what motivates HPC users. The in-depth system log evaluation showed most 
users not taking advantage of the parallel capacity available to them. Out of 2,681 jobs run in 
May 2004, 2,261 executed on one eight-processor node. This accounted for 41% of all the CPU 
hours utilized on the system. Furthermore, the job logs show that in between 2004 and 2006, 
1,706 jobs out of 59,030 jobs on DataStar were removed from the batch nodes for exceeding the 
maximum job time limit of 18 hours. Of these jobs, 50% were running on fewer than eight pro-
cessors. Given access to a resource with thousands of processors, the majority of users choose 
to reduce the priority of performance tuning as soon as possible, indicating that they have likely 
found a point at which they feel they can be productive. 

What’s Working in HPC: investigating HPC User Behavior and Productivity

7 Simon, H. “Rational choice and the structure of the 
environment,” Psychological Review, Volume 63: 2002. 
pp. 129–138. 
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The support ticket evaluation tells a similar story. Many users requested longer run times, 
and fewer than ten users requested anything related to performance. Furthermore, some of the 
users requesting longer run times did not have checkpoint restart capabilities in their code, and 
many were running serial jobs. 

While performance is certainly the original reason for moving to an HPC platform, the atti-
tudes and statements of our interview subjects reinforces the assertion that it is not a primary 
goal of theirs. When asked about productivity problems, performance was generally taken for 
granted while other issues such as reliability, file system capacity and storage policies, as well as 
queue policies and congestion, were discussed in depth. Performance problems are just one of 
many barriers to productivity, and focus on performance at the expense of other improvements 
should be avoided. 

Conjecture 4: Lack of publicity is the main roadblock to adoption of performance and par-
allel debugging tools. 

While it is true that many users are unfamiliar with the breadth of performance tools available, 
a significant portion of users simply prefer not to use them. Reasons given by interviewees 
included problems scaling tools to large number of processors, unfamiliar and inefficient GUI 
interfaces, steep learning curves, or the overwhelming detail provided in the displayed results. 

Unsurprisingly, the performance optimization consultants were the most likely to use tools. 
However even they often opted for the seemingly more tedious path of inserting print state-
ments with timing calls and recompiling rather than learning to use performance tools. 

The situation for parallel debuggers was no more encouraging. Only one interviewee used 
readily available parallel debugging tools. However, other developers indicated that if the 
debugging tools were consistent and easy to use at scales of up to hundreds of processors, they 
would have been used. In their current state, parallel debugging tools are considered difficult or 
impossible to use by the interviewees who had tried them. 

It is clear that there is a long way to go before common HPC programming practice embraces 
the powerful tools that the research community has built. Certainly there is a lack of motivation 
on the part of many HPC programmers to learn new tools that will help them with the task 
of performance optimization, which is not always their main priority. Aside from the obvious 
issue of acceptable performance at large scale, it seems that continuing to strive for tools that 
are easier to learn and use is important for improved adoption. As discussed by Pancake,8 it 
is important to design tools from a user’s perspective and with early user involvement in the 
design process for the design to be effective. 

Conjecture 5: HPC programmers would demand dramatic performance improvements to 
consider major structural changes to their code. 

Programmers we surveyed showed a surprising indifference to the risks involved in rewriting 
often very large code bases in a new language or changing a communication model. Although 
many successful projects last for tens of years without making significant changes, eight of the 
12 Summer Institute attendees responded that they were willing to make major code changes for 
surprisingly small system performance improvements or policy changes. 

8 Pancake, C. “Can Users Play an Effective Role in 
Parallel Tool Research?” in Tools and Environments for 
Parallel Scientific Computing, SIAM, 1996.
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Many of the codes discussed were larger than 100,000 lines of code (LOC). Though all eight 
codes over 10,000 LOC had checkpoint restart capabilities, three users were willing to rewrite 
code for the ability to run a single job longer, two requesting only a factor of two job runtime 
limit extension. The respondents were likely unaware that most sites will allow such small excep-
tions on a temporary basis. Of the three respondents with more than 100,000 lines of code, only 
one considered such a major change, requesting in return a factor of ten improvement in either 
processor speed or job time limits. The results imply that although performance, judged by time 
to solution, is not always the main goal of HPC users, users would be very receptive to work for 
guaranteed system and policy changes. 

While we see some conflicting responses, it might be possible for HPC centers to capitalize 
on these attitudes to get users to use profiling tools and spend some effort to improve individual 
code performance, and ultimately queue wait times, by giving minor compensation to coop-
erative users. Also, in some cases, it would seem that there is a gap between what users want and 
what they think they can get. This gap could be bridged with improved communication with 
users regarding site policies and resource options. 

Conjecture 6: A computer science background is crucial to success in performance optimi-
zation. 

It may seem straightforward to say that if you want to improve your code performance you 
should take it to a computer scientist or software engineer.  However, of the developers on suc-
cessful projects interviewed, only one had a formal computer science background. In fact, many 
of these successful projects are operating at very large scale without any personnel with a formal 
computer science or software engineering background. 

There was a general consensus among interviewees that without competence in the domain 
science, changes to the project are destined for failure. Two subjects actually contracted out 
serious code bugs and made use of library abstractions to avoid in depth knowledge of parallel 
programming. One such library was written by a computer scientist, and once it matured, users 
were able to achieve high performance using it without a parallel computing background. 

HPC centers and software developers should keep in mind that their target audience is not 
computer scientists, but rather physical scientists with a primary focus on scientific results. 

Conjecture 7: Visualization is not on the critical path to productivity in HPC. 

Every interview subject and all but three survey respondents used visualization regularly 
to validate the results of runs. For those projects, any problems and productivity bottlenecks 
that affect visualization have as much impact on overall productivity as poor computational 
performance during a run. 

Such bottlenecks can include problems with available visualization and image conversion 
software and with finding capable resources for post-processing and visualization rendering. As 
evidence, one interviewee stated a desire for a large head node with a large amount of RAM to 
handle rendering. This implies that users’ productivity could be greatly enhanced by a dedicated 
visualization node that shared a file system with computation nodes. 

What’s Working in HPC: investigating HPC User Behavior and Productivity
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Conclusion 

In performance tuning, it is common to hear advice to profile before attempting an opti-
mization, because often the true bottleneck is a surprise.  In this paper, we have attempted to 
find where the true bottlenecks in HPC productivity are by investigating general trends in user 
behavior and by asking users directly. 

Our analysis shows that, in general, HPC user needs are heterogeneous with respect to 
HPC resource usage patterns, requirements, problems experienced and general background 
knowledge. These factors combined dictate how individual productivity is viewed and clarifies 
the motivations for focusing on performance. Our research also gave us insight into the tools 
and techniques currently available and to what extent they have been embraced in the com-
munity. 

Future research will evaluate the effectiveness of some of the techniques discussed by users. 
Based on our findings, we will continue to evaluate HPC community feedback to build a general 
consensus on the problems that affect productivity and where research time and system money 
can best be spent to allow these systems to live up to their promise and continue to support 
leading-edge research. 
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1. introduction

The HPCC benchmark suite was initially developed for the DARPA’s HPCS program1 to 
provide a set of standardized hardware probes based on commonly occurring computational 
software kernels. The HPCS program has initiated a fundamental reassessment of how we define 
and measure performance, programmability, portability, robustness and, ultimately, produc-
tivity in the high-end domain. Consequently, the suite was aimed to both provide conceptual 
expression of the underlying computation as well as be applicable to a broad spectrum of 
computational science fields. Clearly, a number of compromises must have lead to the current 
form of the suite given such a broad scope of design requirements. HPCC was designed to 
approximately bound computations of high and low spatial and temporal locality (see Figure 1 
which gives the conceptual design space for the HPCC component tests). In addition, because 
the HPCC tests consist of simple mathematical operations, this provides a unique opportunity 
to look at language and parallel programming model issues. As such, the benchmark is to serve 
both the system user and designer communities.2
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Figure 1. The application areas targeted by the HPCS Program are 
bound by the HPCC tests in the memory access locality space.

Figure 2. HPCS program benchmarks and performance targets.

Finally, Figure 2 shows a generic memory subsystem and how each level of the hierarchy is 
tested by the HPCC software and what are the design goals of the future HPCS system - these 
are the projected target performance numbers that are to come out of the winning HPCS vendor 
designs.
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2. The ToP500 influence

Rank Name Rmax HPL PTRANS STREAM FFT RANDA Latency Bandwidth

1 BlueGene/L 280.6 259.2 4665.9 160 2311 35.47 5.92 0.16 

2 BlueGene W 91.3 83.9 171.5 50 1235 21.61 4.70 0.16

3 ASC Purple 75.8 57.9 553.0 44 842 1.03 5.11 3.22

4 Columbia 51.9 46.8 91.3 21 230 0.25 4.23 1.39

9 Red Storm 36.2 33.0 1813.1 44 1118 1.02 7.97 1.15

Table 1. All of the top-10 entries of the 27th TOP500 list that have results in the HPCC database.

The most commonly known ranking of supercomputer installations around the world is 
the TOP500 list.3 It uses the equally famous LINPACK Benchmark4 as a single figure of merit 
to rank 500 of the world’s most powerful supercomputers. The often raised issue of the relation 
between TOP500 and HPCC can simply be addressed by recognizing all the positive aspects of 
the former. In particular, the longevity of TOP500 gives an unprecedented view of the high-end 
arena across the turbulent times of Moore’s law5 rule and the process of emerging of today’s 
prevalent computing paradigms. The predictive power of TOP500 will have a lasting influence 
in the future as it did in the past. While building on the legacy information, HPCC extends the 
context of the HPCS goals and can serve as a valuable tool for performance analysis. Table 1 
shows an example of how the data from the HPCC database can augment the TOP500 results.

3. Short History of the Benchmark

The first reference implementation of the code was released to the public in 2003. The first 
optimized submission came in April 2004 from Cray using their recent X1 installation at Oak 
Ridge National Lab. Every since then Cray has championed the list of optimized submissions. 
By the time of the first HPCC birds-of-feather at the 2004 Supercomputing conference in 
Pittsburgh, the public database of results already featured major supercomputer makers - a sign 
that vendors noticed the benchmark. At the same time, a bit behind the scenes, the code was 
also tried by government and private institutions for procurement and marketing purposes. 
The highlight of 2005 was the announcement of a contest: the HPCC Awards. The two comple-
mentary categories of the competition emphasized performance and productivity - the very 
goals of the sponsoring HPCS program. The performance-emphasizing Class 1 award drew 
attention to the biggest players in the supercomputing industry, which resulted in populating 
the HPCC database with most of the top-10 entries of TOP500 (some of which even exceeding 
performance reported in the TOP500 - a tribute to HPCC’s continuous results’ update policy). 
The contestants competed to achieve highest raw performance in one of the four tests: HPL, 
STREAM, RANDA, and FFT. The Class 2 award, by solely focusing on productivity, introduced 
subjectivity factor to the judging but also to the submitter criteria of what is appropriate for the 
contest. As a result, a wide range of solutions were submitted spanning various programming 
languages (interpreted and compiled) and paradigms (with explicit and implicit parallelism). 
It featured openly available as well as proprietary technologies, some of which were arguably 
confined to niche markets and some that are widely used. The financial incentives for entering 
turned out to be all that was needed, as the HPCC seemed to have enjoyed enough recognition 
among the high-end community. Nevertheless, HPCwire kindly provided both press coverage 
as well as cash rewards for four winning contestants of Class 1 and the winner of Class 2. At the 

3 Meuer, H. W., Strohmaier, E., Dongarra, J. J., Simon, 
H. D. TOP500 Supercomputer Sites, 28th edition, 
November 2006. (The report can be downloaded from 
http://www.netlib.org/benchmark/top500.html).
4 Dongarra, J. J., Luszczek, P., Petitet, A. “The LINPACK 
benchmark: Past, present, and future,” Concurrency 
and Computation: Practice and Experience, 15:1-8, 
2003.
5 Moore, G. E. “Cramming more components onto 
integrated circuits,” Electronics, 38(8), April 19 1965.
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HPCC’s second birds-of-feather session during the SC|05 conference in Seattle, the former class 
was dominated by IBM’s BlueGene/L from Lawrence Livermore National Lab while the latter 
was split among MTA pragma-decorated C and UPC codes from Cray and IBM, respectively.

4. The Benchmark Tests’ details

Extensive discussion and various implementations of the HPCC tests are given elsewhere.6 7 8 

However, for the sake of completeness, this section lists the most important facts pertaining to 
the HPCC tests’ definitions.

All calculations use double precision floating-point numbers as described by the IEEE 754 
standard9 and no mixed precision calculations10 are allowed. All the tests are designed so that 
they will run on an arbitrary number of processors (usually denoted as p). Figure 3 shows a more 
detailed definition of each of the seven tests included in HPCC. In addition, it is possible to run 
the tests in one of three testing scenarios to stress various hardware components of the system. 
The scenarios are shown in Figure 4.

HPL

A x = b Compute x from the
system of linear equa-
tions Ax = b.

DGEMM

C ← α A B + β C Compute update to
matrix C with a prod-
uct of matrices A

and B.
STREAM

a ← β b + α c Perform simple opera-
tions on vectors a, b,
and c.

PTRANS

A ← AT + B Compute update to
matrix A with a sum
of its transpose and
another matrix B.

RandomAccess

T

ց
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ր
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ր
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ց

T Perform integer update
of random vector T lo-
cations using pseudo-
random sequence.

FFT

x

→

��
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z Compute vector z to be
the Fast Fourier Trans-
form (FFT) of vector x.

b eff
• →

← • →
← •
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• →
← • →

← •

Perform ping-pong
and various communi-
cation ring exchanges.

Single

P1 .. . .
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... . . PN

ց ↓ ւ
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Embarrassingly Parallel
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. . .
Pi

. . .
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ց ↓ ւ
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. . .
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. . .
PN

ց ↓ ւ
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Figure 3. Detail description of the HPCC component tests 
(A, B, C - matrices, a, b, c, x, z – vectors, a, b - scalars, T 

- array of 64-bit integers).

Figure 4. Testing scenarios of the HPCC  
components.
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6 Dongarra, J., Luszczek, P. “Introduction to the 
HPC Challenge benchmark suite,” Technical Report 
UT-CS-05-544, University of Tennessee, 2005.
7 Luszczek, P., Dongarra, J. “High performance 
development for high end computing with Python 
Language Wrapper (PLW),” International Journal 
of High Performance Computing Applications, 2006. 
Accepted to Special Issue on High Productivity 
Languages and Models.
8 Travinin, N.,  Kepner, J. “pMatlab parallel Matlab 
library,” International Journal of High Performance 
Computing Applications, 2006. Submitted to Special 
Issue on High Productivity Languages and Models.
9 ANSI/IEEE Standard 754-1985. “Standard for binary 
floating point arithmetic,” Technical report, Institute of 
Electrical and Electronics Engineers, 1985.
10 Langou, J., Langou, J., Luszczek, P., Kurzak, J., 
Buttari, A., Dongarra, J. “Exploiting the performance 
of 32 bit floating point arithmetic in obtaining 64 
bit accuracy,” In Proceedings of SC06, Tampa, Florida, 
Nomveber 11-17 2006.  
See http://icl.cs.utk.edu/iter-ref.
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5. Benchmark Submission Procedures and results

The reference implementation of the benchmark may be obtained free of charge at the 
benchmark’s web site.11 The reference implementation should be used for the base run: it is 
written in portable subset of ANSI C12 using hybrid programming model that mixes OpenMP13 14  
threading with MPI15 16 17 messaging. The installation of the software requires creating a script 
file for Unix’s make(1)utility. The distribution archive comes with script files for many common 
computer architectures. Usually, few changes to one of these files will produce the script file for 
a given platform. The HPCC rules allow only standard system compilers and libraries to be used 
through their supported and documented interface and the build procedure should be described 
at submission time. This ensures repeatability of the results and serves as an educational tool for 
end users that wish to use the similar build process for their applications.

After, a successful compilation the benchmark is ready to run. However, it is recommended 
that changes be made to the benchmark’s input file that describes the sizes of data to use during 
the run. The sizes should reflect the available memory on the system and the number of pro-
cessors available for computations.

There must be one baseline run submitted for each computer system entered in the archive. 
There may also exist an optimized run for each computer system. The baseline run should use 
the reference implementation of HPCC and, in a sense, it represents the scenario when an appli-
cation requires use of legacy code - a code that cannot be changed. The optimized run allows 
developers to perform more aggressive optimizations and use system-specific programming 
techniques (e.g., languages, messaging libraries, etc.) but at the same time still gives the verifi-
cation process enjoyed by the base run.
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Figure 5. Sample kiviat diagram of results for three different 
interconnects that connect the same processors.

Figure 6. Sample interpretation of the HPCC results.

All of the submitted results are publicly available after they have been confirmed by email. 
In addition to the various displays of results and raw data export the HPCC website also offers 
a kiviat chart display to visually compare systems using multiple performance numbers at once. 
A sample chart that uses actual HPCC results’ data is shown in Figure 5.

11 HPCC - http://icl.cs.utk.edu/hpcc/
12 Kernighan, B. W., Ritchie, D. M.. The C Programming 
Language. Prentice-Hall, 1978.
13 OpenMP: Simple, portable, scalable SMP 
programming. http://www.openmp.org/.
14 Chandra, R., Dagum, L., Kohr, D., Maydan, D., 
McDonald, J., Menon, R. Parallel Programming in 
OpenMP. Morgan Kaufmann Publishers, 2001.
15 Message Passing Interface Forum. “MPI: 
A Message-Passing Interface Standard,” The 
International Journal of Supercomputer Applications 
and High Performance Computing, 8, 1994.
16 Message Passing Interface Forum. MPI: A 
Message-Passing Interface Standard (version 1.1), 
1995. Available at: http://www.mpi-forum.org/.
17 Message Passing Interface Forum. MPI-2: 
Extensions to the Message-Passing Interface, 18 
July 1997. Available at http://www.mpi-forum.
org/docs/mpi-20.ps.
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Figure 6 show performance results of currently operating clusters and supercomputer instal-
lations. Most of the results come from the HPCC public database.

6. Scalability Considerations

Name Generation Computation Communication Verification Per-processor  
data

HPL n2 n3 n2 n2 p-1

DGEMM n2 n3 n2 1 p-1

STREAM m m 1 m p-1

PTRANS n2 n2 n2 n2 p-1

RandomAccess m m m m p-1

FFT m m log2 m m m log2 m p-1

b_eff 1 1 p2 1 1

Table 2. Time complexity formulas for various phases of the HPCC tests (m and n correspond to the 
appropriate vector and matrix sizes, p is the number of processors.

There are a number of issues to be considered for benchmarks such as HPCC that have scalable 
input data to allow for an arbitrary sized system to be properly stressed by the benchmark run. 
Time to run the entire suite is a major concern for institutions with limited resource allocation 
budgets. Each component of HPCC has been analyzed from the scalability standpoint and Table 
2 shows the major time complexity results. In following, it is assumed that:

• M is the total size of memory,
• m is the size of the test vector,
• n is the size of the test matrix,
• p is the number of processors,
• t is the time to run the test.

Clearly any complexity formula that grows faster than linearly with respect to any of the 
system sizes is a cause of potential problem time scalability issue. Consequently, the following 
tests have to be addressed:

• HPL because it has computational complexity O(n3).
• DGEMM because it has computational complexity O(n3).
• b_eff because it has communication complexity O(p2).

The computational complexity of HPL of order O(n3) may cause excessive running time 
because the time will grow proportionately to a high power of total memory size:

 

To resolve this problem, we have turned to the past TOP500 data and analyzed the ratio of 
Rpeak to the number of bytes for the factorized matrix for the first entry on all the lists. It turns 
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out that there are on average 6±3 Gflop/s for each matrix byte. We can thus conclude that the 
performance rate of HPL remains constant over time (rHPL ~ M), which leads to:

 

which is much better than (1).

There seems to be a similar problem with the DGEMM as it has the same computational 
complexity as HPL but fortunately, the n in the formula related to a single process memory size 
rather than the global one and thus there is no scaling problem.

Lastly, the b_eff test has a different type of problem: its communication complexity is O(p2) 
which is already prohibitive today as the number of processes of the largest system in the 
HPCC database is 131072. This complexity comes from the ping-pong component of b_eff that 
attempts to find the weakest link between all nodes and thus, theoretically, needs to look at the 
possible process pairs. The problem was remedied in the reference implementation by adapting 
the runtime of the test to the size of the system tested.

7. Conclusions

No single test can accurately compare the performance of any of today’s high-end systems let 
alone any of those envisioned by the HPCS program in the future. Thus, the HPCC suite stresses 
not only the processors, but the memory system and the interconnect. It is a better indicator of 
how a supercomputing system will perform across a spectrum of real-world applications. Now 
that the more comprehensive HPCC suite is available, it could be used in preference to com-
parisons and rankings based on single tests. The real utility of the HPCC benchmarks are that 
architectures can be described with a wider range of metrics than just flop/s from HPL. When 
looking only at HPL performance and the TOP500 list, inexpensive build-your-own clusters 
appear to be much more cost effective than more sophisticated parallel architectures. But the 
tests indicate that even a small percentage of random memory accesses in real applications can 
significantly affect the overall performance of that application on architectures not designed to 
minimize or hide memory latency. The HPCC tests provide users with additional information to 
justify policy and purchasing decisions. We expect to expand and perhaps remove some existing 
benchmark components as we learn more about the collection.

This work was supported in part by the DARPA, NSF, and DOE through the DARPA HPCS program under grant 
FA8750-04-1-0219 and SCI-0527260.
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1. introduction

Much of the literature in the Software Engineering community concerning programmer pro-
ductivity was developed with assumptions that do not necessarily hold in the High Performance 
Computing (HPC) community:

1. In scientific computation insights culled from results of one program version often drives 
the needs for the next.  The software itself is helping to push the frontiers of understanding 
rather than the software being used to automate well-understood tasks. 

2. The requirements often include conformance to sophisticated mathematical models. 
Indeed, requirements may often take the form of an executable model in a system such as 
Mathematica, and the implementation involves porting this model to HPC systems. 

3. “Usability” in the context of an HPC application development may revolve around 
optimization to the machine architecture so that computations complete in a reasonable 
amount of time. The effort and resources involved in such optimization may exceed initial 
development of the algorithm.  

Due to these unique requirements, traditional software engineering approaches for improving 
productivity may not be directly applicable to the HPC environment. 

As a way to understand these differences, we are developing a set of tools and protocols 
to study programmer productivity in the HPC community.  Our initial efforts have been to 
understand the effort involved and defects made in developing such programs. We also want 
to develop models of workflows that accurately explain the process that HPC programmers use 
to build their codes. Issues such as time involved in developing serial and parallel versions of a 
program, testing and debugging of the code, optimizing the code for a specific parallelization 
model (e.g., MPI, OpenMP) and tuning for a specific machine architecture are all topics of 
study. If we have those models, we can then work on the more crucial problems of what tools 
and techniques better optimize a programmer’s performance to produce quality code more 
efficiently. 

Since 2004 we have been conducting human-subject experiments at various universities 
across the U.S. in graduate level HPC courses (Figure 1). Graduate students in a HPC class are 
fairly typical of a large class of novice HPC programmers who may have years of experience 
in their application domain but very little in HPC-style programming. Multiple students are 
routinely given the same assignment to perform, and we conduct experiments to control for 
the skills of specific programmers (e.g., experimental meta-analysis) in different environments.  
Due to the relatively low costs, student studies are an excellent environment to debug protocols 
that might be later used on practicing HPC programmers.  

Limitations of student studies include the relatively short programming assignments due to 
the limited time in a semester and the fact these assignments must be picked for the educational 
value to the students as well as their investigative value to the research team.
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In this article, we present both the methodology we have developed to investigate pro-
grammer productivity issues in the HPC domain (Section 2), some initial results of studying 
productivity of novice HPC programmers (Section 3), and current plans for improving the 
process in the future (Section 4).

2. Experiment methodology

In each class, we obtained consent from students to be part of our study. There is a 
requirement at every U.S. institution that studies involving human subjects must be approved 
by that university’s Institutional Review Board (IRB). The nature of the assignments was left to 
the individual instructors for each class since instructors had individual goals for their courses 
and the courses themselves had different syllabi.  However, based on previous discussions as 
part of this project, many of the instructors used the same assignments (Table 1), and we have 
been collecting a database of project descriptions as part of our Experiment Manager website 
(See Section 4). To ensure that the data from the study would not impact students’ grades (and 
a requirement of almost every IRB), our protocol quarantined the data collected in a class from 
professors and teaching assistants for that class until final grades had been assigned. 

Embarrassingly parallel:      Buffon-Laplace needle problem, Dense matrix-vector multiply

Nearest neighbor:      Game of life, Sharks & fishes, Grid of resistors, Laplace’s equation, Quantum dynamics

All-to-all:      Sparse matrix-vector multiply, Sparse conjugate gradient, Matrix power via prefix

Shared memory:      LU decomposition, Shallow water model, Randomized selection, Breadth-first search

Other:      Sorting

Table 1. Sample programming assignments

We need to measure the time students spend working on programming assignments with the 
task that they are working on at that time (e.g., serial coding, parallelization, debugging, tuning).  
We used three distinct methods: (1) explicit recording by subject in diaries (either paper or web-
based); (2) implicit recording by instrumenting the development environment; and (3) sampling 
by an operating system installed tool (e.g., Hackystat1). Each of these approaches has strengths 
and limitations. But significantly, they all give different answers.  After conducting a series of 
tests using variations on these techniques, we settled on a hybrid approach that combines diaries 
with an instrumented programming environment that captures a time-stamped record of all 

UCSB
3 STUDIES

Iowa State
1 STUDY UMD

6 STUDIES

MIT
3 STUDIES

Mississippi State
2 STUDIES

USC
4 STUDIES UCSD

1 STUDY

UH
1 STUDY

Figure 1. Classroom studies  
conducted.

1 Johnson, P. M., Kou, H., Agustin, J. M., Zhang, Q., 
Kagawa, A., Yamashita, T. “Practical automated 
process and product metric collection and analysis 
in a classroom setting: Lessons learned from 
Hackystat-UH,” Proceedings of the 2004 International 
Symposium on Empirical Software Engineering, Los 
Angeles, California, August, 2004.
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compiler invocations (including capture of source code), all programs invoked by the subject as 
a shell command, and interactions with supported editors.  Elsewhere,2 we describe the details 
of how we gather this information and convert it into a record of programmer effort.

After students completed an assignment, the data was transmitted to the University of 
Maryland, where it was added to our Experiment Manager database. Looking at the database 
allows post-project analysis to be conducted to study the various hypotheses we have collected 
via our folklore collection process.

For example, given workflow data from a set of students, the following hypotheses that are 
the subjective opinion of many in the HPCS community, collected via surveys at several HPCS 
meetings, can be tested:3

Hyp 1: The average time to fix a defect due to race conditions will be longer in a shared 
memory program compared to a message-passing program. To test this hypothesis we can 
measure the time to fix defects due to race conditions.

Hyp. 2: On average, shared memory programs will require less effort than message passing, 
but the shared memory outliers will be greater than the message passing outliers. To test this 
hypothesis we measure the total development time.

Hyp. 3:  There will be more students who submit incorrect shared memory programs compared 
to message-passing programs. To test this hypothesis we can measure the number of 
students who submit incorrect solutions.

Hyp. 4:  An MPI implementation will require more code than an OpenMP implementation. To 
test this hypothesis we can measure the size of code for each implementation.

The classroom studies are the first part of a larger series of studies we are conducting (Figure 
2).  We first run pilot studies with students.  We next conduct classroom studies, then move onto 
controlled studies with experienced programmers, and finally conduct experiments in situ with 
development teams. Each of these steps contributes to our testing of hypotheses by exploiting 
the unique aspects of each environment (i.e., replicated experiments in classroom studies and 
multi-person development with in situ teams).  We can also compare our results with recent 
studies of existing HPC codes.4
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2 Hochstein, L., Basili, V., Zelkowitz, M., 
Hollingsworth, J., Carver, J. “Combining self-reported 
and automatic data to improve effort measurement,”  
Joint 10th European Software Engineering Conference 
and 13th ACM SIGSOFT Symposium on the Foundations 
of Software Engineering (ESEC/FSE 2005), Lisbon, 
Portugal, September 2005, 356-365.

3Asgari, S., Hochstein, L., Basili, V., Zelkowitz, M., 
Hollingsworth, J., Carver, J., Shull, F. “Generating 
Testable Hypotheses from Tacit Knowledge for High 
Productivity Computing,” 2nd International Workshop 
on Software Engineering for High Performance 
Computing System Applications, (May, 2005) St. Louis, 
MO, 17-21.

4 Post, D., Kendall, R.P., Whitney, E. “Case study of 
the Falcon Project,” Second International Workshop on 
Software Engineering for High Performance Computing 
Systems Applications, St. Louis, MO, 2005.
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Defect studies
As part of our effort to understand development issues, our classroom experiments have 

moved beyond effort analysis and have started  to look at the impact of defects (e.g., incorrect 
or excessive synchronization, incorrect data decomposition) on the development process. By 
understanding how, when, and the kind of defects that appear in HPC codes, tools and tech-
niques can be developed to mitigate these risks to improve the overall workflow. As we have 
shown,2 automatically determining workflow is not precise, so we are working on a mixture of 
process activity (e.g., coding, compiling, executing) with source code analysis techniques. The 
process of defect analysis we are building consists of the following main activities:

Analysis: 
1. Analyze successive versions of the developing code looking for patterns of changes 

represented by successive code versions (e.g., defect discovery, defect repair, addition of 
new functionality).

2. Record the identified changes.
3. Develop a classification scheme and hypotheses.

For example, a small increase in source code, following a failed execution and following a 
large code insertion, could represent the pattern of the programming adding new functionality, 
followed by a test and then defect correction. Syntactic tools that find specific defects can be 
used to aid the human-based heuristic search for defects.

Verification: 
We then need to analyze these results at various levels.  Verification consists of the following 

steps, among others:
1. If we can somehow obtain the “true” defect sets, we can directly compare our analysis 

results with them to evaluate the analysis results quantitatively.
2. Multiple analysts can independently analyze the source code and record identified defects.
3. Examine individual instances of defects to check if each defect is correctly captured and 

documented.
4. Provide defect instances and classify them into one of the given defect types. This can be 

used to check the consistency of the classification scheme.

Nakamura, et al. explore this defect methodology in greater detail.5

3. results

Early results needed to validate our process were to verify that students could indeed produce 
good HPC codes and that we could measure their increased performance. Table 2 is one set of 
data that shows that students achieved speedups of approximately three to seven on an 8-pro-
cessor HPC machine. CxAy means class number x, assignment number y. This coding was used 
to preserve anonymity of the student population.

5 Nakamura, T., Hochstein, L.,  Basili, V. R. “Identifying 
Domain-Specific Defect Classes: Using Inspections 
and Change History,” International Symposium on 
Empirical Software Engineering, (ISESE), Rio de Janeiro, 
September, 2006.
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Data set Programming Model Speedup on 8 processors

Speedup measured relative to serial version:

C1A1 MPI mean 4.74, sd 1.97, n=2

C3A3 MPI mean 2.8, sd 1.9, n=3

C3A3 OpenMP mean 6.7, sd 9.1, n=2

Speedup measured relative to parallel version run on 1 processor:

C0A1 MPI mean 5.0, sd 2.1, n=13

C1A1 MPI mean 4.8, sd 2.0, n=3

C3A3 MPI mean 5.6, sd 2.5, n=5

C3A3 OpenMP mean 5.7, sd 3.0, n=4

Table 2. Mean, standard deviation, and number of subjects for computing speedup  
on Game of Life program.

 
       

Additional classroom results include the following:

1. Measuring productivity in the HPC domain is part of understanding HPC workflows. 
However, what does productivity mean in this domain?6 Figure 3 is one model that we can 
derive from the fact that the critical component of HPC programs is the speedup achieved 
by using a multiprocessor HPC machine over a single processor.7 Productivity is defined as 
the relative speedup of a program using an HPC machine compared to a single processor 
divided by the relative effort to produce the HPC version of the program compared to a 
single processor version. 

Program → 1 2* 3 4 5

Serial effort (hrs) 3 7 5 15

Total effort (hrs) 16 29 10 34.5 22

Serial Exec (sec) 123.2 75.2 101.5 80.1 31.1

Parallel Exec (sec) 47.7 15.8 12.8 11.2 8.5

Speedup 1.58 4.76 5.87 6.71 8.90

Relative  Effort 2.29 4.14 1.43 4.93 3.14

Productivity 0.69 1.15 4.11 1.36 2.83

*- Reference serial implementation

Table 3. Productivity experiment: Game of Life.

Table 3 shows the results for one group of students programming the Game of Life (a simple 
nearest neighbor cellular automaton problem where the next generation of “life” depends upon 
surrounding cells in a grid and a popular first parallel program for HPC classes).8 The data 
shows that our definition of productivity had a negative correlation compared to both total 
effort and HPC execution time, and a positive correlation compared to relative speedup. While 
the sample size is too small for a test of significance, the relationships all indicate that produc-
tivity does behave as we would want a productivity measure to behave for HPC programs, i.e., 
good productivity means lower total effort, lower HPC execution time and higher speedup.

Speedup = 
Reference Execution Time

Parallel Execution Time

Productivity = 
Relative Speedup

Relative E�ort

Relative Effort = 
Parallel E�ort

Reference E�ort

Figure 3. HPC productivity.

6 The International Journal of High Performance 
Computing Applications, (18)4, Winter 2004.

7 Zelkowitz, M., Basili, V., Asgari, S., Hochstein, 
L., Hollingsworth, J., Nakamura, T. “Measuring 
productivity on high performance computers,” IEEE 
Symp. on Software Metrics, Como, Italy, (September 
2005).

8 Gardner, M. “Mathematical games,” Scientific 
American, October, 1970.
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Serial MPI OpenMP Co-Array 
Fortran StarP XMT

Nearest-Neighbor Type Problems

Game of Life C3A3 C3A3
C0A1
C1A1

C3A3

Grid of Resistors C2A2 C2A2 C2A2 C2A2

Sharks & Fishes C6A2 C6A2 C6A2

Laplace’s Eq. C2A3 C2A3

SWIM C0A2

Broadcast Type Problems

LU Decomposition C4A1

Parallel Mat-vec C3A4

Quantum Dynamics C7A1

Embarrassingly Parallel Type Problems

Buffon-Laplace Needle C2A1
C3A1

C2A1
C3A1

C2A1
C3A1

Other

Parallel Sorting C3A2 C3A2 C3A2

Array Compaction C5A1

Randomized Selection C5A2

Table 4. Some of the early classroom experiments on specific architectures.

Table 4 shows the distribution of programming assignments across different programming 
models for the first seven classes (using the same CxAy coding used in Table 2). Multiple 
instances of the same programming assignment lend the results to meta-analysis to be able to 
consider larger populations of students.2

Dataset Programming Model Application Lines of Code

C3A3 Serial Game of Life mean 175, sd 88, n=10

MPI mean 433, sd 486, n=13

OpenMP mean 292, sd 383, n=14

C2A2 Serial Resistors 42 (given)

MPI mean 174, sd 75, n=9

OpenMP mean 49, sd 3.2, n=10

Table 5. MPI program size compared to OpenMP program size.

For example, we can use this data to partially answer an earlier stated hypothesis (Hyp. 
4: An MPI implementation will require more code than an OpenMP implementation). Table 5 
shows the relevant data giving credibility to this hypothesis (but this early data is not statistically 
significant yet).

2. An alternative parallel programming model is the PRAM model, which supports fine-
grained parallelism and has a substantial history of algorithmic theory.9 XMT-C is an 
extension of the C language that supports parallel directives to provide a PRAM-like 

2 Hochstein, L., Basili, V., Zelkowitz, M., 
Hollingsworth, J., Carver, J. “Combining self-reported 
and automatic data to improve effort measurement,”  
Joint 10th European Software Engineering Conference 
and 13th ACM SIGSOFT Symposium on the Foundations 
of Software Engineering (ESEC/FSE 2005), Lisbon, 
Portugal, September 2005, 356-365.

9 Vishkin, U., Dascal, S., Berkovich, E., Nuzman, J. 
“Explicit Multi-Threading (XMT) Bridging Models 
for Instruction Parallelism,” 10th ACM Symposium on 
Parallel Algorithms and Architectures (SPAA), 1998.
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model to the programmer. A prototype compiler exists that generates code that runs on a 
simulator for an XMT architecture. We conducted a feasibility study in a class to compare 
the effort required to solve a particular problem. After comparing XMT-C development to 
MPI, on average, students required less effort to solve the problem using XMT-C compared 
to MPI. The reduction in mean effort was approximately 50%, which was statistically 
significant at the level of p<.05 using a t-test.10 

3. While OpenMP generally required less effort to complete (Figure 4), the comparison of 
defects between MPI and OpenMP, however, did not yield statistically significant results, 
which contradicted a common belief that shared memory programs are harder to debug. 
However, our defect data collection was based upon programmer-supplied effort forms, 
which we know are not very accurate. This led to the defect analysis mentioned previously,5 
where we intend to do a more thorough analysis of defects made. 

4. We are collecting low-level behavioral data from developers in order to understand the 
“workflows” that exist during HPC software development.  A useful representation of HPC 
workflow could both help characterize the bottlenecks that occur during development 
and support a comparative analysis of the impact of different tools and technologies upon 
workflow.  One hypothesis we are studying is that the workflow can be divided into one of 
five states; serial coding, parallel coding, testing, debugging, and optimization. 

In a pilot study at the University of Hawaii in Spring of 2006, students worked on the Gauss-
Seidel iteration problem using C and PThreads in a development environment that included 
automated collection of editing, testing, and command line data using Hackystat.  We were able 
to automatically infer the “serial coding” workflow state as the editing of a file not containing 
any parallel constructs (such as MPI, OpenMP, or PThread calls), and the “parallel coding” 
workflow state as the editing of a file containing these constructs. We were also able to automati-
cally infer the “testing” state as the occurrence of unit test invocation using the CUTest tool.  In 
our pilot study, we were not able to automatically infer the debugging or optimization workflow 
states, as students were not provided with tools to support either of these activities that we could 
instrument. 

Figure 4. Time saved using OpenMP over MPI for 10 
programs. (MPI used less time only in case 1 above).

10 Hochstein, L., Basili, V. R. “An Empirical Study to 
Compare Two Parallel Programming Models,” 18th 
ACM Symposium on Parallelism in Algorithms and 
Architectures (SPAA ‘06), July 2006, Cambridge, MA.

5 Nakamura, T., Hochstein, L.,  Basili, V. R. “Identifying 
Domain-Specific Defect Classes: Using Inspections 
and Change History,” International Symposium on 
Empirical Software Engineering, (ISESE), Rio de Janeiro, 
September, 2006.
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 Our analysis of these results leads us to conclude that workflow inference may be possible in 
an HPC context. We hypothesize that it may actually be easier to infer these kinds of workflow 
states in a professional setting, since more sophisticated tool support is often available that can 
help support inferencing regarding the intent of a development activity.  Our analyses also cause 
us to question whether the five states that we initially selected are appropriate for all HPC devel-
opment contexts.  It may be that there is no “one size fits all” set of workflow states, and that we 
will need to define a custom set of states for different HPC organizations in order to achieve our 
goals. Additional early classroom results are given in Hochstein, et al.11

4. Current developments

As stated earlier, we have collected effort data from student developments and begun to 
collect data from professional HPC programmers in three ways; manually from the participants, 
automatically from timestamps at each system command, and automatically via the Hackystat 
tool, sampling the active task at regular intervals. All three methods provide different values for 
“effort,” and we developed models to integrate and filter each method to provide an accurate 
picture of effort.

Our collection methods evolved one at a time. To simplify the process of students (and other 
HPC professionals) providing needed information, we developed an experiment management 
package (Experiment Manager) to more easily collect and analyze this data during the devel-
opment process. It includes effort, defect and workflow data, as well as copies of every source 
program during development. Tracking effort and defects should provide a good data set for 
building models of productivity and reliability of HEC codes.

The Experiment Manager (pictured in Figure 5) has three components:

1. UMD server: This web server is the entry portal to the Experiment Manager for students, 
faculty and analysts and contains the repository of collected data.

UM Experiment
Manager (EM)

+
Hackystat Server

HPDBugBase
(defect data)

UM Data Analysis
Environment

Master DB Sanitized DB

UM Workflow Tool

Data Analysis 
Interfaces

SQL Queries

Upload
Develop
Analysis

Tool

Download
Analysis
Results

UM Admin

Technician

Professor

Student

HPC Machine

Umdinst
+

Hackystat
Sensors

Local Server: Capture
Data

UMD Server: Store
Data

UMD Server: Analyze
Data

Sign up for account/key
Manual online logs questionnaire

Create a course
Monitor registration

Install Upload

Local Log
Upload Sanitized Data

Write/Run Code

Figure 5. Experiment Manager Structure.

11 Hochstein, L., Carver, J., Shull, F., Asgari, S., 
Basili, V., Hollingsworth, J. K., Zelkowitz, M. “HPC 
Programmer Productivity: A Case Study of Novice HPC 
Programmers,” Supercomputing 2005, Seattle, WA, 
November 2005.
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2. Local server: A local server is established on the user machine (e.g., the one used by 
students at a university) that is used to capture experimental data before transmission to 
the University of Maryland.

3. UMD analysis server: A server stores sanitized data available to the HPCS community 
for access to our collected data. This server avoids many of the legal hurdles implicit with 
using human subject data (e.g., keeping student identities private).

For the near future, our efforts will focus on the following tasks:

• Evolve the interface to the Experiment Manager web-based tool to simplify use by the 
various stakeholders (i.e., roles).

• Continue to develop our tool base, such as the defect data base and workflow models.
• Build our analysis data base including details of the various hypotheses we have studied in 

the past.
• Evolve our experience bases to generate performance measures for each program sub-

mitted in order to have a consistent performance and speedup measure for use in our 
workflow and time to solution studies.

5. Conclusions

     Over the past three years we have been developing a methodology for running HPC 
experiments in a classroom setting and obtaining results we believe are applicable to HPC pro-
gramming in general. We are starting to look at larger developments and at large university 
and government HPC projects in order to increase the confidence on the early results we have 
obtained with students.

     Our development of the Experiment Manager system allows us to more easily expand 
our capabilities in this area. This allows many others to run such experiments on their own in a 
way that allows for the appropriate controls of the experiment so that results across classes and 
organization at geographically diverse locations can be compared in order to get a thorough 
understanding of the HPC development model.
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1. introduction

Computational scientists and engineers face many challenges when writing codes for high-
end computing (HEC) systems. With the movement towards peta-scale machines and the 
increasing focus on improving development productivity, writing a good code is even more 
challenging. The DARPA High Productivity Computing Systems (HPCS)1 project is developing 
new machine architectures, programming languages, and software tools to improve the produc-
tivity of scientists and engineers.2 Although the existence of these new technologies is important 
for improving productivity, they will not achieve their stated goals if individual scientists and 
engineers are not able to effectively use them to solve their problems. A necessary first step in 
determining the usefulness of new architectures, languages and tools is to gain a better under-
standing of what the scientists and engineers do, how they do it, and what problems they face 
in the current HEC development environment. Because the HEC community is very diverse,3 it 
is necessary to sample different application domains to be able to draw any meaningful conclu-
sions about the commonalties and trends in software development in this community. 

This article discusses some of the similarities and differences found in 10 projects taken 
from different domains as understood by researchers in the HPCS project. We have undertaken 
a series of case studies to gain deeper insight into the nature of software development for sci-
entific and engineering software. These studies have focused on two different types of projects, 
(characterized in Table 1): 

• ASC-Alliance projects, DOE-sponsored computational science centers based at University 
of Illinois Urbana-Champaign, California Institute of Technology, University of Utah, 
Stanford University, and University of Chicago. In the rest of this paper, the codes are 
referred to as ASC Codes.

• Codes from DARPA HPCS mission partners (organizations that have a vested interest in 
the outcome of and often financial sponsorship of the project), some of which are clas-
sified and would therefore be inaccessible to other researchers. Due to the sensitive nature 
of many of these projects, they must remain anonymous in this paper. In the rest of this 
paper, these codes are referred to as MP Codes.

ASC Codes MP Codes

# of projects 5 5

Environment Academia (ASC-Alliance projects) Mission Partners (DoD, DOE, NASA)

Classified No Some

Code size 200-600 KLOC 80-760 KLOC

Type Coupled multi-physics applications Single physics to coupled multi-physics and 
engineering

Table 1. Types of projects examined.

1 DARPA HPCS - http://www.highproductivity.org/
2 Hochstein, L., Carver, J., Shull, F., Asgari, S., Basili, 
V., Hollingsworth, J.K., and Zelkowitz, M. “HPC 
Programmer Productivity: A Case Study of Novice HPC 
Programmers”. In Proceedings of SuperComputing, 
2005, p. 35.
3 Post, D.E., Kendall, R.P., and Lucas, R.F., “The 
Opportunities, Challenges, and Risks of High-
Performance Computing in Computational Science 
and Engineering”, in Advances in Computers, p. 
239-301.
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While these case studies are still ongoing, the results to date allow for some cross-project 
analysis to provide a deeper understanding of the state of the practice.4 5 6 7 In this paper, we 
discuss some observations gained from this analysis. 

2. Goals & methodologies

While the ultimate goal for the case studies of the ASC codes and the MP codes is the same 
(to improve the productivity of computational scientists and engineers), we have used a dif-
ferent approach for each type of code. The object of study in the ASC codes has been the indi-
vidual programmer (e.g., “Where does the computational scientist spend her time?”), while the 
object of study in the MP studies has been the project (e.g., “Which factors determine project 
success?”).  Table 2 shows a comparison of the goals of the two types of case studies.

ASC Codes MP Codes

• Characterize which scientific programming activities are time-
consuming and problematic
• Characterize the impact of technologies on developer effort. 
• Characterize the common problems encountered by programmers.

• Identify ways that successful projects manage risk
• Identify project success factors
• Identify productivity barriers that should be addressed by vendors
• Develop a reference body of case studies

Table 2. Case study goals.

Table 3 provides an overview of the methodology used for each type of case study. In 
general, the approach for the MP codes was more comprehensive (longer questionnaire, on-site 
interviews, multiple subjects interviewed independently), and the approach for the ASC codes 
was more lightweight, which permitted quicker turnaround time when running the studies. 
Furthermore, each type of study collected different types of information. The focus in the ASC 
was lower level (i.e., more details about fewer things), while the focus in the MP codes was 
higher level (i.e., less details about more things).

ASC Codes MP Codes

Type Ongoing Retrospective

Interviewees Technical leads Projects leads,  project staff

Overview 1. Pre-interview questionnaire
2. Telephone interview
3. Generate summary document
4. Send summary document for approval/com-
ments
5. Generate synthesis report across all projects
6. Send synthesis report to all centers for 
approval/ comments

1. Identify project and sponsors
2. Negotiate case study participation
3. Pre-interview questionnaire
4. On-site interview
5. Initial list of findings
6. Follow-up
7. Write report

Focus • Product: attributes, machine target, history
• Project organization: structure, staff, 
configuration management
• Development activities: adding new 
features, testing, tuning, debugging, porting, 
effort distribution, bottlenecks, achieving 
performance
• Programming models and productivity: 
choice of model, adoption of language, 
productivity measures

• Goals, requirements, deliverables
• Project characteristics, structure, 
organization and risks
• Code Characteristics
• Staffing
• Workflow Management
• V&V, Testing
• Success Measures
• Lessons Learned

Table 3. Methodology.

4 Kendall, R.P., Carver, J., Mark, A., Post, D., Squires, S., 
and Shaffer, D. “Case Study of the Hawk Code Project,” 
Technical Report, LA-UR-05-9011, Los Alamos National 
Laboratories, 2005. 
5 Kendall, R.P., Mark, A., Post, D., Squires, S., and 
Halverson, C. “Case Study of the Condor Code Project,” 
Technical Report, LA-UR-05-9291, Los Alamos National 
Laboratories, 2005. 
6 Kendall, R.P., Post, D., Squires, S., and Carver, J. “Case 
Study of the Eagle Code Projec,” Technical Report, 
LA-UR-06-1092, Los Alamos National Laboratories, 
2006. 
7 Post, D., Kendall, R.P., and Whitney, E. “Case study 
of the Falcon Project”. In Proceedings of Second 
International Workshop on Software Engineering for 
High Performance Computing Systems Applications 
(Held at ICSE 2005), St. Louis, USA, 2005, p. 22-26.
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3. observations

Using the different methodologies and the different foci described in Section 2, we per-
formed a cross-study analysis between the ASC codes and the MP codes to look for similar and 
different observations that can lead to deeper insight into the software development process. In 
this section, we present those observations along with the support (or lack of support) provided 
by each type of code (ASC and MP) during independent case studies. To facilitate the discussion 
of the observations, we have grouped them into high-level categories (each found in a subsection 
below) with a list of specific observations. 

3.1 Goals and Drivers of Code Development

Code performance is not the driving force for developers or users; the science and porta-
bility are of primary concern: All of the projects studied were parallel programming projects, 
therefore code performance is clearly an important goal. But the primary interest of the users 
and developers is the science, not fast, scalable code (except where fast, scalable code is required 
to meet the scientific objective). As long as the overall project performance goals were met, the 
science and portability are of greater concern than the last 10-20% of speedup. For example, a 
member of one ASC Code team stated that metrics, like scalability, are recorded because the 
sponsor requests them, while “scientifically useful results per calendar time” would be a more 
appropriate productivity metric. Furthermore, the developers of the MP Codes indicated that 
because the codes are often used for decades, they focus more effort on portability than on speed 
and scalability for the current hardware platform. In fact, to the extent that an increase in per-
formance can be achieved through new hardware, these developers believe that the portability 
of the software is far more important than the efficiency of the software. 

Code success depends on customer satisfaction: For the MP Codes, success or failure 
depends on whether the code developers keep their customers (not always their sponsor) sat-
isfied. Conversely, in the ASC Codes, the developers were their own customers, so they had no 
external customers to please.

3.2 Actions and Characteristics of Code Developers

Most developers are domain scientists or engineers, not computer scientists: The majority 
of the developers for the ASC Codes did not have any formal training in computer science 
or software engineering. On some (but not all) ASC Codes, the chief software architect had a 
background in computer science. The developers of the MP Codes found that it is easier to teach 
domain scientists and engineers how to write code than it is for computer scientists to com-
prehend the deep scientific or engineering phenomena being captured by the code, especially 
at the research level. 

The distinction between developer and user is blurry: In the ASC Codes, there are no 
“external” customers whose needs must be met. The primary users of the code are the devel-
opers themselves, who were adding functionality to advance their own research. In some cases, 
there are external users of the code. But, because these codes may require additions or modifica-
tions to be useful, an external “user” may still need to do a certain degree of programming. The 
MP Codes have more external users than the ASC Codes, but the developers still constitute an 
important portion of the user-base.
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There is high turnover in the development team: Because the ASC Codes are developed in 
academic environments, many project members (postdocs and grad students) are involved for 
only a few years (e.g., in one project, the two technical leads had been involved for less than 
four years). Most of the ASC Codes evolved from earlier codes that were written by scientists 
who had long since left the organization. Conversely, most of the MP Codes had a core set of 
developers that remained with the project for the duration, often for a decade or more.

3.3 Software Engineering Process and Development Workflow

There is minimal but consistent use of software engineering practices: All ASC Codes 
exhibited the use of a subset of standard software engineering practices (i.e., the use of version 
control systems, regression tests, and software architecture). However, the developers of these 
codes did little defect tracking or documentation beyond user guides. Conversely, the MP 
Codes did not show this type of consistency in the use of software engineering practices across 
teams. Each team made use of a few recognized software engineering practices, but there was 
no uniformity across projects.

Development is evolutionary at multiple levels: In both the ASC and MP Codes, the devel-
opers are working on “new science.” As a result, they do not always know the correct output 
in advance, providing numerous challenges for verifying the code relative to the phenomenon 
being simulated. The teams all use an iterative, agile approach, where new algorithms are 
implemented and then evaluated to determine whether they are of sufficient quality for current 
simulations. Even though the more rigid CMM approach may not be appropriate for many of 
the MP Codes, many projects claim to follow this approach, possibly as a result of pressure from 
sponsors.

Tuning for a specific system architecture is rarely done, if ever: None of the ASC Codes 
optimize/tune their code for particular platforms. For example, they assume that they are devel-
oping for a “flat MPI” system, and so do not optimize for machines with SMP nodes. One 
project member made a comment that was representative of all projects: 

The amount of time it takes to tune to a particular architecture to get the last bit of juice, is 
considerably higher than the time it takes to develop a new algorithm that improves per-
formance across all platforms. Our goal is to develop algorithms that will last across many 
lifetimes. We are not really interested in getting that last little bit of performance. 

The MP Codes did perform some tuning, but it was in conflict with their larger goal of 
portability (see Observation 1 in Section 3.1).

There is little reuse of MPI frameworks: Several of the ASC and MP Codes built their own 
frameworks to abstract away the low-level details of the MPI parallelism. However, these frame-
works are built from scratch each time, rather than being reused from another system. One 
developer from an ASC Code explained this lack of reuse: 

We have encountered other projects where people have said, ‘We’ll use class library X that 
will hide array operations and other things’, but all sorts of issues arose. These frameworks 
make assumptions about how the work will be done, and to go against the assumptions of 
the framework requires getting into really deep details, which defeats the purpose of using 
such a framework.

observations about Software development for High End Computing



��

Most development effort is focused on implementation rather than maintenance: In both 
the ASC and the MP Codes, most of the effort was expended during implementation, rather 
than maintenance. This distribution indicates that rather than being released and maintained 
like traditional IT projects, these projects are under constant development.

3.4 Programming Languages

Once selected, the primary language does not change: Languages adopted by the MP Codes 
do not change once they have been selected. The majority of the older codes were written in 
FORTRAN77. Some newer codes and many of the ASC Codes are in FORTRAN90, C and C++. 
C seems popular for handling I/O issues. Some of the ASC and MP Codes have also adopted 
Python to drive the application. However, on one project the Python-based driver was later 
abandoned because it increased debugging complexity and reduced the portability of the code.

Higher level languages (e.g., Matlab) are not widely adopted for the core of applications: The 
MP teams have not adopted these higher level languages for use in their codes. The ASC teams 
have restricted the use of these high level languages to prototyping numerical algorithms.

3.5 Verification and Validation

Verification and Validation are very difficult in this domain: While V&V is difficult in all 
software domains, it was seen as especially difficult for both the MP and ASC Codes due to some 
unique characteristics. It is difficult for developers to judge the correctness of code because they 
often do not know the “right” answer. In addition, there are at least three places where defects 
can enter the code, making it difficult to ultimately identify the source of the problem: 1) the 
underlying science could be incorrect; 2) the translation of the domain model to an algorithm 
could be incorrect; and 3) the translation of that algorithm into code could be incorrect.

Visualization is the most common tool for validation: All of the ASC Codes provide visu-
alization to allow the users to view the large amounts of outputs produced. For the experienced 
user, this visualization provides a sanity check that the code is behaving reasonably. 

3.6 Use of Support Tools during Code Development

Overall, tool use is lower than in other software development domains: Both the ASC 
and the MP Codes tended to view integrated development environments (IDEs) as being too 
restrictive. Instead, they liked the flexibility of UNIX-style command-line tools, such as make 
and shell scripts, to use for building applications. A complicating factor for wide tool use is that 
the target machines do not support the development tools that are available to programmers in 
other domains. Conversely, developers from both ASC and MP Codes did make some use of 
HPC-specific tools such as performance monitors and parallel debuggers.

Third party (externally developed) software and tools are viewed as a major risk factor: 
Because the code developed by the MP Codes tend to take years to develop, they are not willing 
to put their development at risk by relying on a software package or tool that may not be 
supported in the future. Furthermore, the ASC teams were concerned with the portability of 
libraries, which decreased their likelihood of use.
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4. Conclusions

In this paper, we have summarized our findings from a series of case studies conducted with 
ten ASC and MP Codes as a series of observations. Due to different environments in which 
each code is developed, some of the observations are consistent across code teams while others 
vary across code teams. Overall, we found high consistency among the ASC Codes and the MP 
Codes. Due to the different environments and foci of these projects, this result is both surprising 
and positive. In addition, despite the fact that a large majority of the developers on these teams 
have little or no formal training in software engineering, they have been able to make use of 
some basic software engineering principles. Further education and motivation could increase 
the use of these principles and further increase the quality of scientific and engineering software 
that has already demonstrated its value. 

Based on the positive results thus far, we have plans to conduct additional case studies to 
gather more data in support of or in contradiction to the observations presented in this paper. In 
future case studies, we will strive to investigate codes from additional domains, thereby allowing 
broader, more inclusive conclusions to be drawn.
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Application Software for High Performance Computers: A 
Soft Spot for U.S. Business Competitiveness 

Suzy Tichenor 
Council on Competitiveness

1 The Council on Competitiveness is an organization 
of the top business, university and labor leaders in the 
United States responsible for influencing the course 
of American competitiveness on regional, national 
and global scales.  For additional information about 
its High Performance Computing project and copies 
of reports, surveys and case studies, see http://www.
compete.org/hpc . 
2 Reuther, A., Tichenor, S. “Making the Business Case 
for High Performance Computing: A Benefit-Cost 
Analysis Methodology,” CTWatch Quarterly, Volume 2, 
Number 4A, November 2006.

3 The conference participants included executives 
representing independent software vendors, public 
and private sector HPC users, HPC hardware vendors, 
and public sector funders of HPC R&D.

Recent Council on Competitiveness1 studies have found that nearly all businesses that 
exploit high performance computing (HPC) consider it indispensable for rapid innovation, 
competitive advantage and corporate survival. But Council on Competitiveness research has 
also identified barriers to the broader use of HPC in the business sector.  The companion article 
on high performance computing (HPC) in this issue of CTWatch2 examined one of these bar-
riers—the difficulty of determining the return-on-investment for HPC hardware systems (also 
known as supercomputers)—and proposed a methodology for addressing this issue.  Another 
important barrier preventing greater HPC use is the scarcity of application software capable of 
fully exploiting current and planned HPC hardware systems. 

U.S. businesses rely on a diverse range of commercially available software from independent 
software vendors (ISVs).  At the same time, experienced HPC business users want to exploit 
the problem-solving power of contemporary HPC hardware systems with hundreds, thousands 
or (soon) tens of thousands of processors to boost innovation and competitive advantage. Yet 
few ISV applications today can exploit (“scale to”) even 100 processors, and many of the most-
popular applications scale to only a few processors in practice.  

 
Market forces and technical challenges in recent years have caused the ISVs to pull away from 

creating new and innovative HPC applications, and no other source has arisen to satisfy this 
market need.  For business reasons, ISVs focus primarily on the desktop computing markets, 
which are much larger and therefore promise a better return on R&D investments. ISVs can 
sometimes afford to make modest enhancements to their application software so that it can 
run faster on HPC systems, but substantially revising existing applications or creating new ones 
does not pay off.  As a result, the software that is available for HPC systems is often outdated and 
incapable of scaling to the level needed to meet industry’s needs for boosting problem-solving 
performance. In some cases, the applications that companies want simply do not exist.

This need for production-quality application software and middleware has become a soft 
spot in the U.S. competitiveness armor; a pacing item in the private sector’s ability to harness 
the full potential of HPC. Without the necessary application software, American companies are 
losing their ability to aggressively use HPC to solve their most challenging problems and risk 
ceding leadership in the global marketplace.

To better understand why U.S businesses are having difficulty obtaining the high-perfor-
mance, production-quality application software they need, the Council on Competitiveness 
convened an HPC Users Conference, followed by a day-long software workshop held in collabo-
ration with the Ohio Supercomputer Center (OSC). Participants3 discussed the effectiveness of 
current business models for HPC application software, as well as technical and resource barriers 
preventing the development of more effective software. They produced a roadmap of actions 
ISVs, universities and government research establishments could follow, individually and col-
lectively, to address these barriers and ensure that our country has the application software 
needed to solve our most important competitive problems. The major discussion themes and 
recommendations are highlighted in the following sections.
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Market and resource Barriers

A variety of market and resource barriers are retarding development of more scalable, pro-
duction-quality application software.

The Niche HPC Market Discourages Development of Third Party HPC Application 
Software

Despite the rise in global competition and HPC’s proven ability to accelerate innovation and 
increase productivity, HPC remains a niche market with much smaller revenue opportunities 
than the larger commercial computing market. This lowers the research and development capital 
available to develop next-generation HPC application software and lessens the opportunity for 
ISVs to obtain investor funding for HPC R&D. It also heightens the risk that ISVs could be 
“bought out” by companies, which might restrict or eliminate access to their software by U.S. 
commercial and national security organizations that depend on it. 

As for-profit companies, many of which are public, the ISVs often must pursue the broader 
commercial computing market with its larger revenue opportunity. In addition, according to 
the Council’s 2005 Study of the ISVs Serving the High Performance Computing Market, Part A: 
Current Market Dynamics,4 more than a third of the ISVs qualify as small businesses, earning 
less than $5 million annually. Even if these companies were to invest 10 percent of their revenue 
in research and development, this would be sufficient to add only a few new features to existing 
HPC applications. Fundamental rewrites of application software or the creation of new software 
for the HPC niche market require far more investment than this. 

The niche status of the HPC market also reduces the potential for outside investor funding 
for the ISVs that serve the HPC community, eliminating another possible source of research 
and development resources.  Additionally, unlike software developers who serve the broad 
commercial computing market and can keep their prices low by amortizing their research and 
development costs across a large user base, the ISVs that serve the HPC market do not have a 
correspondingly large customer set against which they can amortize their expenses. As a result, 
the ISVs must shoulder the cost of a major software redesign or spread it across a small user 
community, significantly increasing the price of the HPC application software.

Traditional ISV Business Models are Perpetuating the Niche Market

In today’s market, ISVs typically sell unlimited annual-use licenses, often on a per-user or 
per-processor basis. Users often find that they cannot afford the additional software licensing 
fees that apply when they want to run their problems over more processors. This discourages 
them from running larger, more complex problems on their current systems or adding addi-
tional processors. As a result, users don’t exploit the applications to the desired and needed 
degree.

In addition, annual software license fees can be prohibitively expensive for the small and 
mid-sized companies that dominate the U.S business landscape – the same companies that 
represent the potential growth market for HPC. Most cannot afford HPC systems and software, 
nor do they want to deal with the complexity of this technology. Many only want access to 
HPC systems, software and expertise on a periodic basis.  “The analogy,” explained Paul Bemis, 
vice president for marketing at Fluent Inc., “is you’re going to rent a car for the weekend. You 
go to Hertz and they say, sorry, all we offer are annual leases. But you only need the car for the 

4 http://www.compete.org/.  See also Part B: End User 
Perspectives
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weekend. Sorry, they say again, all we offer are annual leases. That is the ISV community today. 
It needs to change. We need to be asking, ‘How much do you need and how long do you need 
it?’”

An interesting service model has evolved in the oil and gas industry that may provide an 
analog. This industry is dominated by small, independent businesses that are the primary pro-
ducers of oil and gas in this country. These small companies rely on service firms to perform 
their complex seismic computations and reservoir simulations. The service firms, populated 
with experienced engineers and scientists, have bundled their knowledge of the industry, their 
ability to create and use HPC software, and access to HPC systems. With these, they have created 
very profitable consulting businesses. This business model produces much higher margins than 
software development alone, because it delivers what the small oil and gas companies value 
most: access to industry expertise and advanced HPC tools in order to make decisions, without 
having to invest in the underlying technology.  This permits even the smallest oil and gas com-
panies to match the technical capabilities of larger competitors. 

Many ISVs Cannot Afford to Acquire Needed Parallel Systems or Support Multiple HPC 
Platforms 

The small size of many ISVs severely limits their ability to acquire even one large parallel 
system, much less the full variety of HPC systems from different vendors. Yet access to these 
systems is essential for developing ISV software applications that will run compatibly and fast 
on the range of hardware products available in the HPC market. Hardware vendors that once 
donated machines to ISVs for software development, testing and support can no longer afford to 
do so because of sharply reduced profit margins. Instead, ISVs must either set aside significant 
funds to acquire systems or, more typically, find a way to access HPC systems without acquiring 
them.

Limited funds also make it difficult for many ISVs to support multiple types of HPC computer 
platforms. They therefore tend to focus on one type of HPC system: the so-called “clusters” built 
from commodity components, because these lower-priced systems are the most pervasive com-
puter products in the HPC market.  This has alarmed business users whose problems are better 
suited to other types of HPC systems. These users believe their crucial, competitive problems 
are being ignored.

A Shortage of Skilled Talent Is Holding Back HPC Software Development

A close examination of the current education pipeline presents a troubling picture regarding 
the availability of next-generation scientists and engineers. American-born students are 
choosing to pursue computational science and engineering less frequently than in the past. 
Research institutions face an added challenge; the development schedule for HPC application 
software may exceed the time that graduate students spend at their facilities. “The people we 
need to architect these codes are unique individuals,” explained John Morrison, division leader 
for computing, communications & networking, Los Alamos National Laboratory. “They have to 
understand the science domain, computational science, computer science, and then figure out 
how to make these big applications run on a parallel computer and to scale.” 

On a positive note, trends in desktop computing may bring new talent to bear on this 
problem. Multi-core processors – technology that allows multiple processors to work together 
on a single chip—already are finding their way to the desktop computers of many workers and 
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could stimulate development of more parallel software. As this technology proliferates in the 
future, every desktop computer is likely to become a parallel computer, and the broader com-
mercial software development community will be forced to address the same challenge that 
the HPC community has struggled with for years: creating applications that work in a parallel 
environment. This should bring extraordinary energy, money and talent to the software devel-
opment process, resulting in new tools and new solutions for HPC users, too.

Technical Barriers

In addition to market and resource barriers, HPC users and software developers also face 
technical barriers that are impeding the development of more advanced HPC application 
software and underlying middleware. 

Current HPC Software Needs Better Interfaces So That It Can Be Integrated Into The 
Business Workflow

Businesses can increase dramatically the value of their HPC systems when usage is expanded 
beyond the Ph.D. researchers and integrated into the workflow of the organization. This means 
that HPC applications and tools must be distributed at the desktop to “non-experts,” i.e., 
designers, engineers, analysts and others who are more directly involved in the production of an 
organization’s product or service. The key to putting HPC applications and tools into the hands 
of the non-Ph.D.s at the desktop is better user interfaces that are easy to operate. 

Integration of HPC into workflow practices becomes even more important as competitive 
pressures drive companies to shorten product cycles.  As little as a six-month delay in product 
introduction can allow competitors to take market share and substantially cut into profit 
margins.  Yet, because of the primitive user interfaces in use today, it can take longer to set up a 
problem than to run it, particularly as the number of processors increases in HPC systems. In 
this environment, even one day’s delay in setting up and running an HPC problem can signifi-
cantly impact the workflow.  When users are under time-to-market pressures, they tend to run 
smaller problems whose solutions may not provide the needed competitive boost.  

User Dependence On Legacy Systems And Their Integration Into Key Business Processes 
Can Slow The Development Of New Application Software

  
For many ISVs, the requirement to maintain and add features to “legacy codes” is tying up 

limited development dollars that could be spent creating new software with greater parallelism, 
or at a minimum substantially revising the legacy software. Given the limited R&D resources of 
most ISVs and the requirement that publicly traded companies must report quarterly earnings, 
ISVs invest first in projects customers will pay for today, such as modest revisions to existing 
legacy software. Only then can they consider higher risk, more costly efforts such as developing 
new solutions from scratch or undertaking the “hundred man-year investment” that is needed 
to correctly re-configure a complex software application like MSC.Software’s NASTRAN to run 
on hundreds or thousands of processors.

Integrating HPC applications into the business workflow can increase productivity, but it 
can also slow development of new software.  Industrial HPC users often are reluctant to make 
changes to hardware or critical software after it is integrated into key business processes.  Re-
coding legacy calculations to achieve greater parallelism can change the answers by several 
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percent.  For many long-time HPC users, consistency in results can be even more important 
than improved performance. 

Further, the business process reengineering required to make the switch to newer, more 
efficient applications frequently is too time consuming and risky when companies are under 
market pressures to deliver products to customers on time and within specified design and 
quality parameters.  Dr. Donald Paul, vice president and chief technology officer for Chevron, 
explained that competitive advantage often comes from “how you integrate all of the applica-
tions that you use into major workflows, and how well those are integrated into and drive the 
way the business works. The business process structures that can be built around the technology 
are as important as the technology, and are in fact dependent on the technology.”  While rapidly 
changing software or systems might be acceptable or even desirable in a research environment, 
Dr. Paul explained that it is often intolerable in a business production environment, where a 
single application must be integrated into a complex stream of business processes. 

Software from the Research Community Is Not Adequate for Industry’s Needs

While national laboratories and universities spend hundreds of millions of dollars every year 
on fundamental HPC software research, this software tends to be difficult to use in a corporate 
production environment. Research software typically is developed by Ph.D.s for use by highly 
experienced scientists who are willing to put in extraordinary time and effort to make it work. 
But industry wants fast desktop tools that do not require a Ph.D. to use.  The world of tech-
nical computing has evolved from one that was managed by a few highly skilled and educated 
engineers to one in which computing resources are spread throughout an enterprise to a wide 
variety of people. Research organizations do not develop their applications with these needs in 
mind.

Further compounding the problem is a shrinking federal budget that has reduced the 
amount of government funding available to support joint programs between national labs and 
industry.  In this environment, it is unlikely that the laboratories will reallocate significant por-
tions of their budgets to focus on joint endeavors with ISVs. The labs could be criticized for 
misspending funds, since there is an assumption that they have been given “just enough” to 
fulfill their missions. 

Additionally, research software developed within the universities is often an abstraction of a 
real problem, and may be licensed as open source software. Therefore, it has not been subjected 
to the rigorous testing demanded by industry, and may not allow for proprietary extensions 
to the code that companies require. Consequently, the software developed by these research 
organizations, while providing an important foundation for commercial software, is often inad-
equate for immediate use by industry. 

Some Open Source License Models Inhibit Commercialization of HPC Research Software

 Most HPC research codes are produced by the national laboratories or universities and 
licensed as open source, i.e., the source code is freely available and may be copied or altered 
without permission or payment. However, the terms of some open source license models dis-
courage software developers from improving and commercializing these codes, thereby hin-
dering software innovation.
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For example, the General Public License (GPL) requires that derivative works also bear the 
GPL designation, so they automatically become open source as well. This makes ISVs and other 
software developers reluctant to invest in development, because they cannot keep their improve-
ments proprietary or derive competitive advantage from them. David Turek, vice president of 
Deep Computing at IBM, shared the frustration of many software developers: “It’s very difficult 
when we make major investments to try to produce differentiated technology, and somebody 
says to me ‘Really nice. Now can you put it on everybody else’s platform in the world and make 
it cheap or free?’ What we have to do, given this circumstance, is to work with other platform 
vendors on new business models that satisfy the needs of the end users while also making our 
own technology investments economically viable.”

On the other hand, the Berkeley Software Distribution (BSD) license allows developers 
to incorporate the open source code into derivative works that are not open source and can 
become proprietary. Much successful HPC software that has transitioned from government and 
universities to industry bear BSD-type open source licenses.

 A vibrant, growing HPC market is the best long-term guarantee that production quality 
HPC application software will be available. Participants in the Council-OSC software workshop 
also agreed that wider usage of HPC is crucial for future U.S. economic growth and the nation’s 
ability to maintain a preeminent position in the global marketplace.   Participants made recom-
mendations  for stimulating long-term HPC market growth through near-term accomplish-
ments.

Recommendations for ISVs:

1. Consider pricing changes  or moving to a service- based model in order to provide users 
with software, expertise and access to appropriate HPC hardware. 

2. Partner with companies that use HPC to run demonstration projects that establish the 
business value of using HPC.  

3. Develop easy-to-use interfaces that encourage HPC applications to be integrated into 
organizational workflows. 

Recommendations for Universities:

1.  Enhance their educational programs in computational science at the undergraduate and 
graduate levels to meet the needs for skilled technical workers.

2. Enhance their understanding of the ISV community’s requirements so that they can better 
leverage their own software research and education agendas to  help meet the ISVs’ needs 
where appropriate.

Recommendations for Government:

1. Modify research support practices to provide sustained (multi-year) funding for research 
teams to develop mature research software and algorithms.  Related to this, encourage 
commercialization of suitable software.

2. Where open source HPC research codes are being developed, terms of government grants 
and contracts should more seriously consider BSD model licenses, to enable ISVs to build 
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commercial products based on the codes without jeopardizing the ISVs’ privately created 
intellectual property.  

Conclusions

Implementing these recommendations entails considerable risk to the ISVs, the users, the 
research community, the government, and investors, but failure to take action may inhibit 
competitive advances by U.S. companies and place them in jeopardy should other countries or 
companies capitalize first on the potential for expanded use of HPC.

By leveraging HPC more fully to solve complex, crucial problems, America can unleash 
a new era of innovation-driven growth, creating new industries and markets, fueling wealth 
creation and profits, and generating high-value, higher-paying jobs that will raise the standard 
of living for all citizens.
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introduction

As the need for ever greater computing power begins to overtake the processor performance 
increases predicted by Moore’s Law, massively parallel architectures are becoming the new 
standard for high-end computing.  As a result, programmer effort is increasingly the dominant 
cost driver when developing high performance computing (HPC) systems.  For the end user, 
whereas execution time was once the primary concern, development time is now a significant 
factor in overall time to solution.

In the DARPA High Productivity Computer Systems (HPCS) program1 we have defined the 
overall system productivity, ψ, as utility over cost:

CS + C0 + CM

U(T)ψ =

where utility, U(T), is a function of time.  Generally speaking, the longer the time to solution, 
the lower the utility of that solution will be.  The denominator of the formula is a sum of costs: 
software (CS), operator (CO), and machine (CM).  A higher utility and lower overall cost lead to a 
greater productivity for a given system.

Previously we defined a special case that we call relative development time productivity.3 4 

For the programmer, system utility is measured in terms of application performance.  From 
the end-user’s perspective, the only relevant cost is that of software development.  Thus, for the 
end-user developing small codes, we define productivity as:

 
=

programmer e�ort

application performance
small codes
ψ

For the case of developing parallel codes, we compare the parallel application performance 
to that of a baseline serial application (i.e., parallel speedup) and compare the effort required 
to develop the parallel application to the effort required for the serial version.  Thus we define 
relative development time productivity (RDTP) as:

 
=

relative e�ort

speedup
relativeψ

This metric has been used to analyze several parallel computing benchmark codes and 
graduate student programming assignments. For purposes of analysis in this paper, relative 
effort is defined as the parallel code size divided by the serial code size, where code size is 
measured in source lines of code (SLOC).5

2,
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Analysis

Classroom Experiments

In the HPCS program a series of classroom experiments was conducted in which students 
were asked to create serial and parallel programming solutions to classical problems (see 
“Experiments to Understand HPC Time to Development” in this issue).  The students used C, 
Fortran, and Matlab for their serial codes, and created parallel versions using MPI, OpenMP, 
and Matlab*P (“StarP”).6  Using a combination of student effort logs and automated tools, a 
variety of information was collected, including development time, code size, and runtime per-
formance.

In Figure 1, the graph on the left depicts speedup vs. relative effort for seven classroom 
assignments.  Each data point is labeled according to professor and assignment number, e.g., 
“P0A1.”  The graph on the right plots the median RDTP values for these same classroom assign-
ments (P2A1 and P3A3 each involved two sub-assignments using different programming 
models).  The speedup and relative effort were computed by comparing each student’s parallel 
and serial implementations, and the median values for each assignment are plotted on the graph 
on the left.  Error bars indicate one standard deviation from the median value.  For purposes of 
comparison, all performance data was taken from runs using eight processors.  

The MPI data points for the most part fall in the upper-right quadrant of the speedup vs. 
relative effort graph, indicating that students were generally able to achieve speedup using MPI, 
but at the cost of increased effort.  The OpenMP data points indicate a higher achieved speedup 
compared to MPI, while at the same time requiring less effort.  A plot of the RDTP metric 
(Figure 1, right) makes this relationship clear.  Based on the results from these experiments, 
students were able to be the most productive when using OpenMP.  While the StarP implemen-
tations required the least relative effort, most students were not able to achieve speedup.  This is 
reflected in the lower RDTP value for StarP.
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Figure 1. Speedup vs. Relative Effort and RDTP for the classroom experiments.

6 Choy, R., Edelman, A. MATLAB*P 2.0: A unified 
parallel MATLAB. MIT DSpace, Computer Science col-
lection, Jan. 2003. http://hdl.handle.net/1721.1/3687
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NAS Parallel Benchmarks

The NAS Parallel Benchmark (NPB)7 suite consists of five kernel benchmarks and three 
pseudo-applications from the field of computational fluid dynamics.  The NPB presents an 
excellent resource for this study, in that it provides multiple language implementations of each 
benchmark.  The exact codes used were the C/Fortran (serial, OpenMP) and Java implementa-
tions from NPB-3.0, and the C/Fortran (MPI) implementations from NPB-2.4.  In addition, a 
parallel ZPL8 implementation and two serial Matlab implementations were also included in the 
study.  

In Figure 2, the chart on the left displays speedup vs. relative effort for the NPB.  Each data 
point corresponds to one of the eight benchmarks included in the NPB suite, and the results 
are grouped by implementation.  The chart on the right plots the RDTP values for the various 
implementations of each of the eight NPB benchmark codes.  For purposes of comparison, each 
parallel code was run using four processors.  The speedup and relative effort for each benchmark 
implementation are calculated with respect to a reference serial code implemented in Fortran 
or C.

As shown, the OpenMP implementations tend to yield parallel speedup comparable to MPI, 
while requiring less relative effort.  This is reflected in the higher RDTP values for OpenMP.  
The lone ZPL implementation falls in the upper-left quadrant of the graph, delivering relatively 
high speedup while requiring less effort, as compared to the serial Fortran implementation.  
Accordingly, this ZPL implementation has a high RDTP value.  Although a single data point 
does not constitute a trend, this result was included as an example of an implementation that 
falls in this region of the graph.  The Matlab results provide an example of an implementation 
that falls in the lower-left quadrant of the graph, meaning that its runtime is slower than serial 
Fortran, but it requires less relative effort.  By virtue of its extremely low relative effort, the serial 
Matlab manages to have a RDTP value comparable to parallel Java.

   

Figure 2: Speedup vs. Relative Effort and RDTP for the NPB.
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HPC Challenge

The HPC Challenge suite consists of several activity-based benchmarks designed to test 
various aspects of a computing platform (see “Design and Implementation of the HPC Challenge 
Benchmark Suite” in this issue).  The four benchmarks used in this study were FFT (v0.6a), High 
Performance Linpack (HPL, v0.6a), RandomAccess (v0.5b), and Stream (v0.6a).  These codes 
were run on the Lincoln Laboratory Grid (LLGrid), a cluster of dual-processor nodes connected 
by Gigabit Ethernet.9  The parallel codes were each run using 64 of these dual-processor nodes, 
for a total of 128 CPUs.  The speedup for each parallel code was determined by dividing the 
runtime for a baseline serial C/Fortran code by the runtime for the parallel code (the serial 
Matlab code was treated the same as the parallel codes for purposes of comparison).

Figure 3 presents the results of RDTP analysis for the HPC Challenge benchmarks.  With the 
exception of Random Access (the implementation of which does not scale well on distributed-
memory computing clusters), the MPI implementations all fall into the upper-right quadrant 
of the graph, indicating that they deliver some level of parallel speedup, while requiring greater 
effort than the serial code.  As expected, the serial Matlab implementations do not deliver any 
speedup, but all require less effort than the serial code.  The pMatlab implementations (except 
Random Access) fall into the upper-left quadrant of the graph, delivering parallel speedup while 
at the same time requiring less effort.

The combination of parallel speedup and reduced effort means that the pMatlab implementa-
tions generally have higher RDTP values.  On average the serial Matlab implementations come 
in second, due to their low relative effort.  The MPI implementations, while delivering better 
speedup, also require more relative effort, leading to lower RDTP values.

  

Figure 3. Speedup vs. Relative Effort and RDTP for HPC Challenge.

HPC Challenge Award Competition

In the HPC Challenge Award Competition, teams were invited to submit their own imple-
mentations of selected benchmarks from the HPC Challenge benchmark suite.10  Evaluation 
of entries was weighted 50% for performance and 50% for code elegance, clarity, and size.  The 
results of this competition are shown in Figure 4.

9 Haney, R. et. al.  “pMatlab Takes the HPC Challenge.”  
Poster presented at High Performance Embedded 
Computing (HPEC) workshop, Lexington, MA. 28-30 
Sept. 2004.

10 HPC Challenge - http://icl.cs.utk.edu/hpcc/, 
http://www.hpcchallenge.org/
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These graphs indicate the speedup and relative effort for each submitted implementation 
of the FFT, RandomAccess, HPL/Top500, and Stream benchmarks.  Teams reported the per-
formance of their implementation running on their own parallel computing platform, with no 
restriction on number of processors.  This performance was compared to that of a baseline serial 
implementation to compute speedup.  Relative effort is taken as the size of the parallel code 
relative to the baseline serial implementation.  For each benchmark, the speedup and relative 
effort for the reference C/MPI implementation is indicated for comparison.  The reference C/
MPI implementation generally falls in the upper right quadrant of the graph, indicating that it 
achieved speedup at the cost of additional effort with respect to the serial version.  

As shown in the graphs, 24 of the 30 submissions achieved speedup relative to the serial 
version, and 18 entries required less effort (i.e., smaller code size) relative to the serial version.  
All but two of the entries required less effort than the C/MPI reference implementation.  It is 
also worth noting that half of the submissions, including all of the winning entries, fall in the 
upper left quadrant of the graph, indicating that they achieved speedup while requiring less 
development effort relative to the serial implementation.  This result bolsters the argument for 
using a metric such as RDTP which takes into account both performance and developer effort.
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Figure 4. HPC Challenge Award competition results.
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 Conclusions and Future Work

We have previously introduced a common metric for measuring relative development time 
productivity of HPC software development.  The RDTP metric has been applied to data from 
benchmark codes and classroom experiments, with consistent trends for various programming 
models.

In general the results support the theory that traditional HPC programming models such as 
MPI yield good speedup but require more relative effort than other implementations (Figure 5).  
OpenMP generally provides speedup comparable to MPI, but requires less effort.  This leads to 
higher values of the RDTP metric.  There are questions of scalability with regard to OpenMP 
that are not addressed by this study.

The pMatlab implementations of HPC Challenge provide an example of a language that can 
yield good speedup for some problems, while requiring less relative effort, again leading to 
higher values of the RDTP metric.  

Further classroom experiments are planned, and as more data is collected it will be analyzed 
in the same manner, to see if other trends emerge.  Our current work is focused on designing a 
standard framework for automating the collection, storage, and analysis of workflow data (see 
“Modeling HPC workflows with timed Markov models” in this issue).
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1. introduction

The challenge of utilizing supercomputers effectively at ever increasing scale is not being met,1 
a phenomenon perceived within the high performance computing (HPC) community as a crisis 
of “productivity.”  Acknowledging that narrow focus on peak machine performance numbers 
has not served HPC goals well in the past, and acknowledging that the “productivity” of a com-
puting system is not a well-understood phenomenon, the Defense Advanced Research Project 
Agency (DARPA) created the High Productivity Computing Systems (HPCS) program:2

• Industry vendors were challenged to develop a new generation of supercomputers that are 
dramatically (10 times!) more productive, not just faster; and 

• A community of vendor teams and non-vendor research institutions were challenged to 
develop an understanding of supercomputer productivity that will serve to guide future 
supercomputer development and to support productivity-based evaluation of computing 
systems.

The HPCS Productivity Team at Sun Microsystems responded with two commitments:

1. Embrace the broadest possible view of productivity, including not only machine charac-
teristics but also human tasks, skills, motivations, organizations, and culture, just to name a 
few; and 

2. Put the investigation of these phenomena on the soundest scientific basis possible, 
drawing on well-established research methodologies from relevant fields, many of which 
are unfamiliar within the HPC community.

Team members brought expertise from multiple research fields with a specific focus on 
a sound working knowledge of concepts and methods appropriate to investigating human 
behavior.  Socio-cultural concepts such as culture, ethnography, and social network analysis are 
not typically well understood in the computing community, sometimes leading to re-invention 
of methods already developed and validated in the social sciences.  The first author is a social 
science professional with expertise in established practice.  Other research-level expertise in the 
team included physics (both experimental and computational), software development (both 
technologies and human factors), and empirical software engineering.  Given the breadth of the 
challenge and the small team size, a first principle was that every project demands careful – and 
quick – determination of appropriate outcomes, project constraints, and research methods.  
Conclusions must be founded in data and backed by justification for the design, execution, 
and application. (See also Kitchenham et. al. for general guidelines on conducting empirical 
research.)3

Social scientists have developed numerous methods that are both verifiable and reproducible 
in many contexts.  However, the sheer number of methodological options makes it crucial that 
each project begin with clear research goals in order to identify the most effective combinations 
of concepts, research designs, information sources, and methods.
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The research design presented in this paper is a three-stage framework, based on the scien-
tific method, that allows the team to draw on multiple research disciplines appropriate to the 
phenomena under investigation.  The framework is grounded in empirical data, validated by 
multiple approaches (“triangulation”), and applied to the practicing HPC professionals who 
actually perform the work being studied.

Research findings described in this paper must be understood in the context of the framework, 
as described in Section 2:  definitions of the stages, methods used to collect and analyze infor-
mation within each stage, and the relationships among the stages.  Sections 3, 4, and 5 discuss 
how the framework was applied to studies of the HPC software development community.  
Although the productivity research program is still in progress, significant findings have already 
contributed to the community’s understanding of HPC software development productivity.

2. A Three-stage research design

The research design is summarized in Figure 1.  The stages are necessarily sequential; each 
provides a foundation for research methods in the next. 

Explore and 

Discover
Test and Define

Evaluate and 

Validate

Develop

Hypotheses

Test and Refine

Models

Replicate and 

Validate

Findings

Qualitative
Qualitative and 

Quantitative
Quantitative

STAGE

GOALS

METHODS

Figure 1. Research framework.

This framework is broadly analogous to realizations of the scientific method used in many 
disciplines, although the correspondence can be obscured somewhat by differences among the 
phenomena being studied and the methods appropriate to their study.

Stage 1:  Explore & Discover.  At the outset of an investigation researchers may not know the 
appropriate questions or issues to address, let alone have a coherent theory of the phenomena 
being studied.  The first stage in the framework, based mainly on qualitative methods, is open-
ended; it is designed to produce the insights necessary for hypothesis generation.  Such insights 
can be considered an explicit “model” of the phenomena, analogous to the “paradigm” in which 
scientific inquiry is undertaken and through which experimental data are interpreted.

Stage 2: Test & Define.  Rigor is added using methods that produce additional data sur-
rounding theories generated in the first stage.  This provides feedback on insights, supplies con-
crete data for model refinement, and leads to deeper understanding of what can be measured 
and how those measurements can be interpreted.  This stage of “experimental design” is the 
necessary bridge between theory and experimentation.

Stage 3: Evaluate & Validate.  Finally, more focused and mostly quantitative techniques are 
applied precisely in order to collect data, interpret the results, and validate the outcomes.
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An important benefit of this framework is the reliable “roadmap” for moving from qualitative 
data collection and analysis, which are appropriate for discovery, to more quantitative data col-
lection and analysis methods, which are appropriate to definitional and evaluative research. 

The immediate challenge in a study of such breadth as software development is not so much 
in creating new methods, although researchers can be tempted to do so when investigating phe-
nomena outside their area of training.  A great many methods are available for studying human 
behaviors, the vast majority of which are known to graduate students who have taken class 
work in research design, advanced statistics, ethnographic interviewing, and content analysis.4  
The greater challenge is to determine exactly when, how, and why to use particular methods to 
draw out the implications of findings.  This research framework makes it possible to select the 
appropriate qualitative and quantitative methods for data collection and analysis.

Stage Character Methods

1.  Explore  & Discover Open Ethnography
Case study
Contextual observations
Semi-structured Interviews
Participation
Document review
Language patterning

2.  Test & Define Focused Quasi-experimental studies
Concept mapping
Structured interviews
Questionnaires
Comparative studies
Focus groups
Semiotic analysis

3.  Evaluate & Validate Structured Social network analysis
Surveys
Controlled experiments
Product testing
User-experience simulations
Human testing
Quality measurement

 Table 1 displays a sample of specific data collection and analysis methods appropriate to 
each stage, with the more qualitative methods appearing early and more quantitative methods 
appearing later.  For example the case study with its open-ended qualitative observational and 
interview methods is most useful for early discovery research; on the other hand, surveys are 
appropriate in later stages when their design can be informed by data already collected.  Data 
collection methods are just that: standardized techniques that enable researchers to gather valid 
and relevant information.

Qualitative and quantitative techniques are both useful, but only when used appropriately.  
For example, some methods are better to discern patterns, others to test specific ideas.  Some 
methods are better to describe behavioral phenomena, others for opinions.  Some methods excel 
at documenting how people interact with things, others at discerning how they interact amongst 
themselves.  Some methods are better for discovering just how similar things or people are; 
others are better at teasing out causes from consequences.  Qualitative data provide tremendous 
clues about people on a group level; examples of such “cultural” clues include descriptions of 
perceptions about how people use or classify objects, the nature of their personal interactions, 
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Table 1. Sample methods from the 
research toolbox.

4 Bernard, H. Handbook of Methods in Cultural 
Anthropology. Walnut Creek: Altamara Press. 1999.
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and opinions about the world around them.  Quantitative data are also extremely useful, for 
example the number of lines of code (LOC) contained in an application or the number of full 
time personnel on a code project.

When techniques are combined appropriately, based on sound methodology, it becomes 
possible to create and distinguish among the most important human processes within and 
across groups of people.

3. discovery research, Stage 1: The Use of the Case Study Method

Discovery is the most open-ended and the most time consuming of the three research stages.  
The goal is to uncover and understand the socio-cultural system that frames human action; 
that understanding must be consistent with the way local people understand it and it must be 
expressed in terms of the local (emic) categories people use to describe and categorize their 
own reality.  Researchers collect and analyze verbal, observational and contextual information 
to characterize what people say and do in their natural environment.  Consistencies and, more 
frequently, inconsistencies help identify unarticulated or unrecognized needs, gaps and adapta-
tions often called “work-arounds” and “disconnects.”  Translating disconnects into the frame 
of reference of socio-cultural systems allows the researcher to identify and neutralize well-
established assumptions.  Such assumptions would otherwise be taken as given, which leads to 
stereotypic treatment and precludes understanding of the important and difficult issues.

3.1 HPCS Stage 1 Methods

The key to a successful discovery in a context such as HPC software development is the 
combination of two approaches:  case studies and rapid ethnographic methods. 

The case study approach is a well understood method for gathering initial information about 
a situation, as defined by Robert K. Yin:  “an in-depth look at one or more specific incidents or 
examples.”5  The case study typically employs a set of qualitative, open-ended methodologies to 
explore a topic or problem domain and develop hypotheses.  Methods may include data col-
lection techniques such as Document Reviews, Observation, Collection of Contextual Artifacts, 
Self-Reporting, and Interviews.  The breadth of data that can be collected provides foundational 
knowledge for developing hypotheses.  The case study approach has been used in software engi-
neering6 7 8 9 and has played a significant role in the HPCS productivity research program.10 11 12 13 14 

The objective of rapid ethnographic assessment in discovery research is typically to construct 
a socio-cultural model of the local living system.15 16 All rapid ethnographic approaches share 
three important characteristics “(1) a system perspective, (2) triangulated data collection, and 
(3) iterative data collection and analysis”.15  4 The value of the case study and rapid ethnographic 
assessment approaches is growing; they have been used by the National Center for Atmospheric 
Research,17 Department of Energy,18 19 20 NASA,21 and for describing technical change at the 
Department of Defense.22

The application of these approaches stresses open-ended interviews, site tours (contextual 
observation), participant observation, literature reviews, cultural history, and semiotic (content) 
analysis.  An example from the HPCS research will demonstrate how discovery research gen-

5 Yin, R.K.  Case Study Research: Design and Methods. 
Sage Publications, Second Edition, 1994. 
6 Card, D.N., Church, V.E., Agresti, W.W., “An Empirical 
Study of Software Design Practices,” IEEE Transactions 
on Software Engineering, 1986. 12(2): 264-271.
7 Müller, M.M. and Tichy, W.F. “Case Study: Extreme 
Programming in a University Environment,” In 
Proceedings of 23rd International Conference on 
Software Engineering. May 12-19, 2001. pp. 537-544.
8 Perry, D.E., Sim, S.E., and Easterbrook, S.M. “Case 
Studies for Software Engineers,” In Proceedings of 26th 
International Conference on Software Engineering, ICSE 
2004. pp. 736-738.
9 Seaman, C.B. and Basili, V.R. “An Empirical Study of 
Communication in Code Inspections,” In Proceedings of 
19th International Conference on Software Engineering. 
Boston, MA. May 17-23, 1997. p. 96-106.
10 Carver, J., Hochstein, L., Kendall, R., Nakamura, T., 
Zelkowitz, M., Basili, V., Post, D. “Observations about 
Software Development for High End Computing,” 
CTWatch Quarterly, Volume 2, Number 4A, November 
2006 – http://www.ctwatch.org/quarterly/
11 Kendall, R., Carver, J., Mark, A., Post, D., Squires, S., 
Shaffer, D.  “Case Study of the Hawk Code Project,” Los 
Alamos National Laboratory Report LA-UR-05-9011, 
2005.
12 Kendall, R., Post, D., Squires, S., Halverson, C.  
“Case Study of the Condor Code Project,” Los Alamos 
National Laboratory Report LA-UR-05-9291, 2005.
13 Kendall, R., Post, D., Squires, S., Carver, J.  “Case 
Study of the Eagle Code Project,” Los Alamos National 
Laboratory Report LA-UR-06-1092.
14 Post, D., Kendall, R., Whitney, “Case Study of the 
Falcon Code Project,” Proceedings Second International 
Workshop on Software Engineering for High 
Performance Computing System Applications, St. Louis, 
15 May 2005.
15 Beebe, J.  “Basic Concepts and Techniques of Rapid 
Appraisal,” Human Organization, 54(1): 42-51. 1995.
16 Trotter, R., Schensul, J.  “Methods in Applied 
Anthropology,” in Handbook of Methods in Cultural 
Anthropology, H. Russell Bernard (ed.), Walnut Creek: 
Altamara Press. 1999.
17 Lahsen, M.  “Seductive Simulations: Uncertainty 
Distributions around Climate Modeling,” Social Studies 
of Science 36(6): 895-992. December 2005.
18 Gusterson, H. Nuclear Rites: A Weapons Laboratory 
at the End of the Cold War, University of California 
Press: Berkeley. 1996.
19 Gusterson, H.  People of the Bomb: Portraits of 
America’s Nuclear Complex, University of Minnesota 
Press: Minneapolis. 2004
20 McNamara, L., Trucano, T.  “So Why Do You Trust 
That Model? Some Thoughts on Modeling, Simulation, 
Social Science and Decision Making,” Advanced 
Concepts Group News and Views, 8:2. Albuquerque, 
NM: Sandia National Laboratories. 2006.
21 Shalin, V., Wales, R., “Shift Handovers in ISS Mission 
Control,” in Human Organizational Risk Management 
Workshop, NASA-Ames April 25-27 2001.
22 MacKenzie, D.  “Missile Accuracy: A Case Study in 
the Social Processes of Technological Change,” in The 
Construction of Technological Systems, Wiebe Bijker, 
Thomas Hughes and Trevor Pinch (Eds) MIT Press: 
Cambridge MA.  1987.
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erates cultural insights; those cultural insights lead to better understanding and help develop 
hypotheses that can be tested in the subsequent research stage.

3.2 Example:  The HPC “Expertise Gap”

Anecdotal evidence from DARPA and the HPCS Mission Partners suggested that an 
“expertise gap” lay at the heart of the crisis in HPC application development.23  Case studies were 
conducted first to explore the expertise issue, starting with a detailed look at how professional 
HPC programmers and teams spend their time.  Qualitative data collection methods included 
semi-structured interviews with individual HPC programmers, and contextual observations 
at sites in which HPC programmers work.  Of course the raw data from these methods did 
not directly lead to the kind of insights that are the goal of this research stage.  Combining 
and comparing the data, the team began to identify patterns across individuals and teams, plot 
bottlenecks and create models of HPC programmers, all based on information taken directly 
from the HPC professionals and the context of their work. 

From five case studies a pattern emerged in the area of expertise.  In all cases at least one 
founding team member had been recruited for special knowledge of science, but in each case 
the scientist was not an HPC programmer and had little or no knowledge of FORTRAN or 
C++.  The scientist’s first required task was either to learn one of the programming languages or 
to build a working relationship with someone who did know it.  In either case, the educational 
process took considerable time before the individual/pair could perform effectively.  Project 
management was typically taken on by another person whose role was to “run interference” 
by keeping the sponsor happy and negotiating for time on a shared large machine.  Teams in 
this context typically take about four to six years to get a working code.  Success is commonly 
attributed to having the right mix of expertise.  The team was successful only when they had the 
appropriate mix of knowledge, represented by four areas: 

• Science
• Programming 
• Scaling / Optimizing 
• Management

Even having the range of knowledge is insufficient.  Effective communication and collabo-
ration among the experts can be very challenging and is crucial to project success.

Underlying the ethnographic case study approach is the understanding that all people belong 
to one or more networks of interlocking social relationships in which members share a common 
or core set of beliefs, values and behaviors. Anthropologists and other trained ethnographers 
use various methods to uncover the core sets of beliefs, such as: 

• Gathering individual (emic) perspectives from members of these socio-cultural groups;
• Examining the collected information to identify patterns of shared beliefs, behaviors, 

values and rules;
• Constructing group “mental models” from identified patterns to understand the meaning 

at the core of the system; and
• Interpreting how the members of a socio-cultural network use their mental models to con-

struct and express appropriate shared behaviors, beliefs, and values, to provide a contextual 
frame of meanings for products, and services.
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23 Sarkar, V., Williams, C., Ebcioglu, K.  “Application 
Development Productivity Challenges for High-End 
Computing,” First Workshop on Productivity and 
Performance in High-End Computing, Madrid Spain, pp 
14-18.  February 2004.
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The case studies of HPC software development led to recognizable patterns that might 
explain why HPC expertise is so scarce.  A hypothesis was developed postulating that domain 
specific expertise in at least four different areas is needed to use highly parallel machines.  As 
machines get bigger and more complex, the pool of experts narrows.  Very, very few people have 
complete skill sets.  Team approaches are the best strategy at the moment, but this by itself does 
not appear to represent a long-term solution.  The next research step was to craft a more focused 
study to test the hypothesis and to understand in more detail when and how the various areas of 
expertise were used; this takes place in the second stage of the research framework.

4. definition research, Stage 2: Combining Qualitative with 
Quantitative Measurement

Definition Research helps test an idea or hypothesis focusing the research on more detailed 
use, use features, and meaning associated with activities and helps define work models and 
workflow.  The methods used during Definition Research differ from Discovery because of what 
has already been learned during Discovery:  parameters of the topic, the concepts, and something 
about the individuals.  Definition Research usually starts with a series of questions, based on 
some grounded hypothesis generated during discovery.  For example, researchers investigating 
programming techniques can compare existing codes in context to make inferences about how 
proposed changes might change both the programming work and the results.  

Definition research concentrates on details, so any interviews conducted in this stage are 
more structured than during Discovery.  These interviews follow a set of well-understood rules; 
for example the interviewer builds rapport in the first segment and subsequently seeks deeper 
information.  Details are summarized at the conclusion of the interview in order to confirm 
the data with the respondent.  Verbal and written statements are validated through observed 
actions.  In order to fully understand the specifics of the context, researchers listen for native 
language:  words, terms, and descriptions. 

4.1 HPCS Stage 2 Methods

An advantage of both Discovery and Definition Research is that relatively few cases are 
needed to discern relevant cultural patterns and to learn about shared understandings and 
behaviors in a group.  This approach has powerful implications for quantifying human behavior 
patterns in ways never imagined a few years ago.  Notre Dame mathematician Albert-Laszlo 
Barabasi recently wrote in Science that our grouping ability to collect data about human actions 
combined “with the sophisticated tool of network theory, . . . (provides) a glimpse of an unprec-
edented opportunity to quantify human dynamics.”24  Social network analysis can take millions 
of bits of data and construct reliable and predictive human patterns.  But such an approach can 
begin with small data sets as well.

Mathematician Duncan Watts points out that “the world that we live in is not at all random. 
We are very much constrained by our socioeconomic status, our geographical location, our 
background, our education and our profession, our interests and hobbies. All these things 
make our circle of acquaintances highly nonrandom.”25  Watts and fellow mathematician Steven 
Strogatz are among a growing number of researchers who have been examining highly struc-
tured social networks in order to understand and use mathematical formulations to predict 
membership connectiveness.  Their work has been inspired by, and extends the work of, the 
theoretical mathematician Paul Erdös, who has been indirectly responsible for popularizing 

24 Barabasi, A.L.  “Network Theory – the Emergence 
of the Creative Enterprise,” Science, 308(29): 639-650. 
April 2005.

25 Watts, D., Strogatz, S.  Interview in Discover. 1998.
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the idea of six degrees of separation: the idea that only six other individuals link all humankind 
through their social networks to almost everybody else in the world.

Although Watts and Strogatz are most interested in the interconnectiveness of social net-
works, many others such as Borgatti and Everett26 (see also Mathematical Social Sciences and 
Social Networks) focus on the highly nonrandom nature of social networks.  Their goal is to 
devise statistically reliable mathematical formulae that predict the number of individuals who 
need to be interviewed in order to capture the shared characteristics of social networks: shared 
beliefs, values and behaviors. The analysis of Handwerker and Wozniak suggests the surprising 
low number of seven,27 although this number is reliable only when certain criteria are met:

1. The information gathered is about shared or core understandings within the social 
network.  This is not about group variation.

2. The cognitive domain of the social network is internally consistent and ordered.
3. Information is gathered from key members of the social network:  cultural experts.
4. Informants are interviewed independently of others in their social network.  Informants 

must not be allowed to confound information by checking or comparing notes with other 
members.

5. There are no known divisions within the social network:  no sub-groupings that might 
have distinct sets of core knowledge and behaviors.27

One way to determine if a social network is bounded is to analyze patterns that emerge from 
the data.  Highly redundant information about membership of a group and their perceptions of 
cultural norms are strong evidence that there is consensus about who is in the group and what 
they consider appropriate.  However, if any of the criteria are not met, then another individual 
must be interviewed.  Once a consensus is identified, then it is recorded as a discovery and the 
researcher moves on.  In our Discovery research we were able to identify these shared work 
patterns with a high level of confidence, making it possible to identify potential participants for 
the following research stage.

One of the HPCS goals during the Definition research stage was to understand the workflow 
of HPC programmers and to identify how and where current HPC development paradigms 
limit code development.  For example, a hypothesis from the Discovery stage was that one 
limiting factor is the level and range of expertise needed.  Definition research was designed 
to validate the hypothesis and, if validated, shed additional light on the development process: 
where specific expertise was deployed and where programmers encounter significant time and 
effort bottlenecks.

4.2 Example:  HPC Workflow

Two methods were chosen to collect data:  one quantitative, one qualitative.  Quantitative 
information on programmer activity (time on task details) was collected using HackyStat, an 
in-process software engineering measurement and analysis tool.28 HackyStat recorded hours of 
event traces from development tools (for example “open file,” and “build”) while HPC profes-
sionals developed code.  Additional (qualitative) data was collected in the form of real-time, 
time-stamped journals written by professional code developers who agreed to record a personal 
narrative of their work.
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26 Borgatti, S., Everett, M.G.  “Network Analysis of 
2-mode Data,” Social Networks, 19(3): 243-269. 1997.

27 Handwerker, W.P., Wozniak, D.  “Sampling 
Strategies for the Collection of Anthropological Data: 
An Extension of Boaz’s Answer to Galton’s Problem,” 
Current Anthropology, 38(5): 869-875. 1997.

28 Johnson, P., Paulding, M.  “Understanding HPC 
Development through Automated Process and Product 
Measurement with HackyStat,”  Second Workshop on 
Productivity and Performance in High-End Computing 
(P-PHEC), San Francisco, Feb. 13, 2005. 
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By combining HackyStat telemetry data that measured activity with programmer journals, 
the team was able to corroborate, validate, and interpret results. For example, the significance 
of the expertise gaps and bottlenecks to the HPC productivity problem became apparent when 
studying individual professionals and their time usage; the journal entries represented real-time 
accounts of code development from the programmer’s perspective.  These patterns were used 
to define a typical HPC development workflow, identify where in the workflow the most effort 
is being expended, characterize the expertise profiles associated with workflow tasks, and draw 
conclusions about productivity bottlenecks and their root causes.

These results are summarized in Figure 
2, which illustrates the typical workflow 
that developers go through in creating and 
optimizing HPC applications along with the 
skill sets required to perform each activity.  
A typical workflow includes understanding 
the problem that needs to be solved, for-
mulating an initial computational solution, 
empirically evaluating the proposed solution 
through prototyping or experimentation, 
coding for sequential execution, evaluating 
the overall computational approach, then 
coding and optimizing the results for a par-
allel platform.

Activities that consume the greatest 
proportion of resources, effort, time, and 
expertise, within the overall programming 
effort were also identified:

• Developing correct scientific programs: 
activities associated with translating an 
understanding of the scientific problem 
that must be solved (e.g., a predictive 
weather model) into code. 

• Code optimization and tuning: activities 
associated with refining a serial version of 
the code to ensure correctness and achieve 
desired levels of accuracy and efficiency.

• Code parallelization and optimization: activities associated with parallelizing the code and 
tuning to achieve high machine utilization and rapid execution.

• Porting: where a solution exists, this comprises the activities associated with translating the 
existing solution to a representation appropriate for a new computing platform.

Once the expertise problem was understood and the likely location that consumed the most 
time and effort for those experts was pinpointed, the question of how widely these findings could 
be applied was raised.  Full validation required mapping the extent of the expertise gap, calling 
for a large quantitative survey of the sort suitable for the next stage of the research framework.  

Figure 2. Work Model of HPC Programmers.



CTWatch Quarterly November 2006 A

5. Evaluative research, Stage 3:  developing Quantitative Models for 
validating HPCS Programmer Workflow

Like rapid ethnographic research, evaluative research has its own history that can be traced 
back to the middle of the 20th century.  In 1967 Michael Scriven proposed that all evaluation 
could be broken down into two distinct types, formative and summative evaluation.29 Formative 
evaluation validates and improves upon an idea or hypothesis.  Summative evaluation answers 
the question, “to what extent?” Evaluative researchers use a toolbox of methods from many of 
the social sciences to validate a hypothesis or determine its extent in a population. Methods are 
typically quantitative.  Again the HPCS research provides an example, although this phase of the 
program is in very early stages and the results are still preliminary.

One of the patterns that emerged from case study research suggested that HPCS code teams 
were more concerned about programming correctness than performance. The workflow pin-
pointed the most likely places where a programmer would find the most difficulty.  Up to this 
point the conventional wisdom had been accepted without question, namely that performance 
was the paramount concern of the programmer.  To evaluate the extent of this pattern, which 
was uncovered in Stage 1 and 2, a survey was administered to HPC programmers at National 
Labs and in private institutions where large, highly parallel code is written.  Quantitative statis-
tical procedures were used to analyze the survey data.  Table 3 provides the resulting response 
distribution when asked about the top issues facing the HPC programmer.

 

Portability
Economic Cost

  Fault Tolerant
Program Correctness

Performance
 

Table 2. Response Distribution of Top Issues. 

The case studies in the first stage of this research had provided information about what 
programmers said and the empirical studies of programmers in the second stage supported 
the findings from the earlier research and validated the workflow of the programmer with the 
quantitative data.  Not surprisingly, the survey data collected in the third stage of the research 
confirmed that performance is important in HPC code, but also confirmed that programming 
correctly is at least as important, as reported by 90% of those surveyed.  The perceived value 
of performance is a strong shared value in the HPC community; however, the concern about 
correctness appears to be at least as strong although not verbalized as often.

This example highlights the need to follow the research stages from hypothesis development 
(Stage 1) and question generation (Stage 2) before attempts to quantify.  Unfortunately there 
is a tendency to jump to quantitative research because of the supposed reliability of numbers.  
However, quantitative results are only as good as models of the phenomena that are the context 
for interpretation of the data.  In the example, without having proceeded through the logical pro-
gression from hypothesis to validation, the significant concern for program correctness might 
have been overlooked.  And, of course, the link between correctness and need for expertise is 
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clear. Such an oversight might have led to hardware and software design decisions that turn out 
to be counterproductive in the area of program correctness.

6.  Conclusions

The three research stages and associated methods described in this paper have immense 
potential to increase understanding of software development, both in the HPC community 
and beyond.  Research results to date include fundamental discoveries about productivity.30 31 

32 33 These findings are grounded in empirically validated models that reflect the experience of 
practicing HPC professionals.

We are just beginning to understand how central to the efforts of HPCS research are the 
essential and intimate relationships among people, tools, and code: independent changes in each 
are unlikely to produce the dramatic 10x increase in software productivity that was envisioned 
by the founders of the DARPA HPCS program and which is desperately needed by the HPC 
community.  Meeting that goal demands aligning those changes around a deep understanding 
of what makes software development productive:  for machines, for individuals, for organiza-
tions, and for communities.  As the technology historian, Kingery noted, “... No one denies 
the importance of things, but learning from them requires rather more attention than reading 
texts.”34
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