
Identifying Domain-Specific Defect Classes
Using Inspections and Change History

Taiga Nakamura
University of Maryland

4122 A.V. Williams Building
College Park, Maryland USA

1-301-405-2721

nakamura@cs.umd.edu

 Lorin Hochstein
University of Maryland

4122 A.V. Williams Building
College Park, Maryland USA

1-301-405-2721

lorin@cs.umd.edu

Victor R. Basili
University of Maryland

4111 A.V. Williams Building
College Park, Maryland USA

1-301-405-2668

basili@cs.umd.edu

ABSTRACT
We present an iterative, reading-based methodology for analyzing
defects in source code when change history is available. Our
bottom-up approach can be applied to build knowledge of
recurring defects in a specific domain, even if other sources of
defect data such as defect reports and change requests are
unavailable, incomplete or at the wrong level of abstraction for
the purposes of the defect analysis. After defining the
methodology, we present the results of an empirical study where
our method was applied to analyze defects in parallel programs
which use the MPI (Message Passing Interface) library to express
parallelism. This library is often used in the domain of high
performance computing, where there is much discussion but little
empirical data about the frequency and severity of defect types.
Preliminary results indicate the methodology is feasible and can
provide insights into the nature of real defects. We present the
results, derived hypothesis, and lessons learned.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging – code
inspection and walk-throughs, debugging aids, testing tools.

General Terms
Reliability, Experimentation, Human Factors, Languages.

Keywords
Domain specific defects, code reading, inspection, change history.

1. INTRODUCTION
Since debugging is one of the most time-consuming tasks in
software development, the software engineering community is
very interested in understanding software defects. Although there
have been numerous achievements in this area, many interesting

research questions on defects are still hard to answer due to an
absence of empirical data. For example, organizations may want
to know what kinds of defects are frequently made in their
software projects, so that they can understand where to focus their
efforts during the testing and verification phase. In addition,
developers who start using a new language want to know what
kinds of defects tend to be difficult to deal with, so that they can
understand the strengths and weaknesses of the language. The
reason these questions are difficult is that the answers depend on
specific contexts in which the software was written in a particular
domain, so the results obtained in one domain are often not
applicable to other domain. To address these kinds of problems,
empirical research is needed.

Previous software engineering research on defects has often been
based on the analysis of defect reports or change requests, which
are created by testers and users in various forms [2][20].
Unfortunately, such artifacts are often either incomplete or not
available at all in many software projects. Even when such reports
are available, they seldom contain the appropriate context
information for classifying defects in a useful way. Another
common approach is to analyze metrics which are believed to be
correlated with defects (e.g. job steps [3], program changes [8]).
However, such metrics provide little insight into the nature of the
actual defects.

In this paper, we present a methodology of defect analysis that
uses existing software with source code history. It can be used to
construct a defect classification scheme as well as a profile of the
frequency and severity of the different types of defects that have
occurred. One advantage of our methodology is that this allows us
to identify domain-specific defects by examining the actual
defects that exist in the code. Our approach is “reading-based,”
meaning that our defect analysis is driven by a human reading the
code, identifying defects and classifying them. The results are
iteratively refined through various verification methods. Unlike
other reading techniques, this method involves examining
multiple versions of the source code, and assumes the existence of
a source code repository. This repository allows us to capture the
defects that existed in intermediate versions but were found and
fixed in the final code. We claim that the methodology we present
is effective and powerful if it is appropriately designed and
executed.

Throughout this paper, we use the results of the case study
conducted in the domain of High Performance Computing (HPC)
to present concrete examples for the methodology. Development

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISESE'06, September 21-22, 2006, Rio de Janeiro, Brazil.
Copyright 2006 ACM 1-59593-218-6/06/0009...$5.00.

in HPC is distinctive from generic software development in
several aspects:

� Powerful computation power required in today’s HPC
systems is achieved by hardware with massively parallel
processing. For example, the world’s fastest supercomputer as
of writing this paper consists of 131,072 processors [18]. HPC
software needs to be written so that it can scale up well with the
number of processors and the size of data.

� To leverage this parallelism, developers usually use special
HPC languages such as MPI (Message Passing Interface) [6],
OpenMP [5], and CAF (Co-Array Fortran) [14] associated with
Fortran, C, etc. In addition, various new HPC languages are
being developed.

� HPC systems are often developed by scientists and students
who have not had formal training in software engineering. Very
few traditional software engineering processes or practices are
used in HPC projects.

� Traditional command-line tools and programming styles are
more commonly used than modern GUI tools or object oriented
design.

� Emphasis is put on both correctness and performance. That is,
an HPC program can contain performance defects even if it
produces correct output.

While many HPC projects use a source code management system,
the use of a defect tracking system is very limited. Therefore, our
method is well-suited for establishing knowledge on defects
specific to the HPC domain.

The organization of this paper is as follows. After reviewing
related work in Section 2, we describe our defect analysis
methodology in Section 3. In Section 4 and 5, we describe the
methodology of analysis and verification with the results of case
study. In Section 6, we discuss tool support. We present
discussions in Section 7, and we present a summary in Section 8.

2. RELATED WORK
Code inspections are a well-known family of methods for
identifying defects. Many kinds of inspection techniques have
been developed with differences in how each method is applied
and which technique is used to detect defects [7]. The goal of
code inspection is to improve software quality by finding defects.
Although our method is very similar to conventional code
inspection, the goal of our analysis is to characterize and build
knowledge of recurring defects rather than just identifying the
defects left at the time of the inspection so they can be fixed.
While a normal code inspection usually examines the code at a
specific point of time, our analysis tries to identify defects that
existed in intermediate versions. By examining how much time
was spent on finding and fixing these defects, we can determine
which defect types are more important.

More recently, the research community has become more
interested in mining source code history to obtain useful insights.
In [21], information obtained from code history is used to enhance
the accuracy of the defect detection tool.

The Marmoset system [16] is an automatic source code collection
and testing tool built on top of the Eclipse platform. Like the data
collection system we use, Marmoset captures the source code as
the subjects work on class assignments. Although the collected

data is potentially applicable to our methodology, their focus is on
providing quick feedback to both students and TAs by the
automated testing mechanism.

Our approach is an attempt to formulate and accelerate the
activities done by researchers of defect finding tools and
techniques. When researchers plan to develop a new technology,
they often examine the source code as a preliminary study to
guess what kind of defects are worth preventing and identifying.
[9][21] By doing so, they can be more confident that their
technology will solve a real problem rather than a hypothetical
problem. While they sometimes perform extensive reading-based
analysis, they do not focus on accumulating the knowledge as we
have done, since their goal is to get hints for technology
development.

3. OVERVIEW OF THE METHODOLOGY
OF DEFECT ANALYSYS
In this section, we present the overview of our analysis
methodology. Figure 1 illustrates the methodology we propose.
The process of defect analysis consists of the following main
activities.

� Support: Supplemental activities to assist analysis

� Analysis: Analyze the code, record the identified records,
and develop classification scheme and hypotheses.

� Verification: Verify the analysis results at various levels

As shown in Figure 1, there are feedback loops to make all of
these activities iterative as more data are analyzed and feedback is
given by the verification process.

In the later sections, we present each activity of the methodology
and its concrete realization in the case study in the HPC domain
interleaved, so that we can discuss both the methodology itself
and the issues when it is applied to a specific domain.

Figure 1. Methodology of defect analysis.

Direct analysis

Select code

Literature
Folklore
Develop
heuristics Heuristics-based

Documenting
defects

Develop
tools

Tool-based

Develop
hypotheses

Analysis Verification

Classifying
defects

Quantitative
verification

Individual
defect-based

Classification
scheme based

Hypothesis
based

Support

Experiment
Interview

Survey

Direct analysis

Select code

Literature
Folklore
Develop
heuristics Heuristics-based

Documenting
defects

Develop
tools

Tool-based

Develop
hypotheses

Analysis Verification

Classifying
defects

Quantitative
verification

Individual
defect-based

Classification
scheme based

Hypothesis
based

Support

Experiment
Interview

Survey

Experiment
Interview

Survey

1 2 3 (4) (5) 6 7 (8) (9) 10 11 (12)(13)(14) 15
Version

Size of change

1 2 3 (4) (5) 6 7 (8) (9) 10 11 (12)(13)(14) 15
Version

Size of change

4. DEFECT ANALYSIS
In this section, we describe the methodology of analysis. Our
approach is conducted bottom-up, i.e., building high-level
knowledge by synthesizing and abstracting low-level findings.
The analysis is conducted as a series of the following activities:
Selecting code to analyze, analyzing the code, documenting
identified defects, classifying defects and developing hypotheses.
Since it is difficult to complete all activities in a single pass, we
use an iterative approach. Iteration occurs at several different
levels between and across steps.

Below, the methodology for each activity, and how it was applied
to the case study is described in detail.

4.1 Selection of Code to Examine
4.1.1 Methodology
The methodology requires that multiple versions of the source
code are available for the analyst to identify defects as the code is
changed over time. Depending on the target of the analysis, the
code could come from one particular project, or it could come
from a number of them. In either case there is some flexibility, as
a project often consists of multiple source files. Furthermore,
since we use data with a change history, multiple versions may be
available for a single file, which increases the number of
selections even more. The efficiency of the analysis is affected by
the order in which the data are analyzed, because the analysis
becomes easier as an analyst gains more knowledge about
recurring defects. Also, when there is too much data, the analyst
must prioritize them to make the analysis as effective as possible.
Although we can never know in advance which code is worth
examining, there are several strategies that can be used to select
code.

Simple first: The analyst should begin with code that is already
familiar. Before looking for defects, the analyst should understand
aspects of the program such as code structure, algorithms and
programming style. If there is no such prior knowledge, we
recommend beginning with code that is easiest to understand. For
example, smaller code (e.g. smaller files, earlier versions) tends to
be easier to read. As analysts become more experienced with the
methodology in the target domain, they can move to larger code
which may contain more complex defects.

Pruning versions: When examining the code with the change
history, the number of the versions of each source file can be an
order of hundreds or thousands. Although our basic approach is to
look at all versions of the source files exhaustively, it is often
necessary to guess which version seems more important to shrink
the search space. One approach is to identify the versions of files
where large changes have occurred. Locating these files can help
analysts focus their initial efforts on understanding how the code
has evolved over time, without inspecting every single version
manually. Large changes can be identified by measures such as
total number of lines added and deleted. Figure 2 illustrates the
size of changes in a hypothetical file change history. With the
above strategy, the versions shown in parentheses can be skipped.
For example, a large change from version 2 and 3 might contain
function additions as well as new defects associated with them, so
examining them can help understand what’s happening. In
addition, a series of small changes from version 3 and 6 might
contain fixes to the defects made in version 3, so comparing 3 and
6 can help identifying defects. Therefore, 4 and 5 might be

excluded from the initial inspection. Once defect-like code is
located, the changes between individual versions should be
examined more closely. The search space should be expanded
gradually in the iterative process to capture missed defects.

If the initially inspected code is too difficult to analyze, it should
be marked as “skipped” and other code should be examined. Since
the code analysis is iterative, by examining the same code
multiple times, more defects can be identified.

External information: While the availability of the information
from external sources such as project developers or a defect
tracking system is limited in the situation we are interested in, if
some of the defects are known to exist in particular versions of the
code, the analyst can use that information reading these versions
to confirm them with the lower cost.

4.1.2 Case study in HPC
In the case study, we have collected data from students solving
small parallel programming problems as part of their class
assignments. We captured a snapshot of the source code every
time the students compiled their code on the parallel machine.

The source code analyzed for the case study was collected in 5
assignments. The data from 38 students have been manually
analyzed and the identified defects have been recorded by the first
author. All code analyzed was written in MPI with C. The number
of code snapshots (i.e., the number of captured compiles) for each
student’s code varied from 5 to more than 500. It is unclear
whether a very small number of code snapshots indicate that the
student only needed to compile the program a few times, or that
the student did most of the programming outside of the data
collection environment.

The initial analysis focused only on C/C++ code that uses the MPI
library. While we have also collected data from other parallel
programming approaches, we decided to test the methodology by
focusing our initial efforts on MPI, which is currently the most
popular parallel programming model in HPC.

The number of versions we examined depended upon the size of
the change history. When the number of versions was relatively
small (<50), we examined all versions available. To reduce the
number of versions examined in larger history data, we used the
pruning strategy described in Section 4.1.1, using a “diff” tool to
display the list of versions with the number of lines added and
deleted. We found that our strategy for selecting pairs of versions
to examine changed over time. Initially, comparing distant pairs of
versions (e.g. versions 4 and 8 in Figure 2) did not yield much
insight when searching for defects because it was difficult to
understand all of the different kinds of changes mixed together.
However, once we identified a defect and tried to examine how

Figure 2. Size of changes in a hypothetical change
history

the subject fixed it, it made sense to look at the diffs across large
changes because we could focus on a specific portion of the
source code.

4.2 Code Reading
4.2.1 Methodology
The main part of the analysis is to examine the code and find
defects. As already mentioned, our method is based on code
inspection. As the idea of code inspection indicates, a human
could be the most powerful defect detector, as the problem of
determining whether a given code has a defect is not decidable in
the general case. However, the analyst can easily get lost in
volumes of code. Therefore, it is important to make the details of
the analysis process as explicit as possible.

4.2.1.1 Direct manual analysis
When the analyst has little prior knowledge about the nature of
the defects in the code, generic strategies can be applied that do
not require domain-specific knowledge. The following are generic
strategies for identifying defects.

� Familiarize yourself with the code: Look at a particular
version of the source code to understand the code structure, the
algorithm used to solve the problem, communication pattern,
language features used, naming conventions for
variables/functions, coding styles (e.g., many small functions vs.
a few large functions, OO-like vs. procedural). It's often useful
to read the latest (final) version, as it is the end result of the
development efforts. (All intermediate versions converge toward
this version.) It is also useful to read the early versions too, as
the code tends to be small and simple, and thus easier to
understand attributes such as programming style and initial
structure.

� Look at changes: Examine a “diff” between particular
versions and examine what has changed. For example, look at
the diff between an intermediate version and the final version.
The differences may contain bug fixes, debugging attempts,
function additions, code refactoring, etc., but looking at how the
code has been changed helps understand the defects the subject
found and fixed. Note, however, it is necessary to look at the
unchanged parts of the code as well, because (1) the defects may
exist in the parts that have not been changed at all, as some
defects may not have been noticed by the subject, and (2) the
defects may exist in the global logic, instead of being localized
in the region of the fix.

� Look for specific defects: Gather information about the
kinds of defects that would be expected to occur in the software
domain under investigation. Such information can be gathered
from the literature, or by collecting folklore about defects from
experienced developers in the appropriate domain. Collecting
this knowledge either qualitatively or quantitatively by various
empirical methods can contribute to enhancing an analyst’s
ability to identify defects. The knowledge may take forms such
as known defect types or classification schemes.

4.2.1.2 Heuristic-based detector analysis
As the analysis progresses and we obtain actual defect samples, it
is possible that the analysts can define domain-specific heuristics
to help find some defects. As discussed previously, the ability of
analysts to find defects based on their own knowledge and
experience accumulated is also a kind of heuristic. Unlike such

“tacit” heuristics, however, the heuristics here should be explicitly
documented (e.g., as a checklist), so that other analysts can also
make use of this knowledge. For example, a heuristic might look
like “if the function A is called with the parameter X in one
processor, check if the function B is called with the parameter Y
in the other processor.” Not all heuristics have to describe
absolute defects, so including information on the confidence level
is useful when possible.

Explicit heuristics can also be defined by information from
developers. Again, the difference from the previous subsection is
tacit versus explicit. The process of developing an appropriate set
of heuristics is iterative. The heuristics should be refined as they
are applied to more data.

4.2.1.3 Automated tool-based analysis
The heuristic-based approach described in the previous subsection
is still a manual approach. To accelerate the analysis, it is
important to automate the analysis process as much as possible.
For example, if there is an existing tool that can identify a certain
type of defect, applying it saves the cost of manual analysis for
that defect. Under the assumption that there is no well-established
knowledge on all defects that exist in the target projects, analysis
with existing tools cannot completely replace manual analysis.
However, since the methodology is iterative, new tools can be
developed that detect recurring defects based on analysis from
previous iterations. The use and development of the tools will be
discussed in Section 6.

4.2.2 Defect analysis in the HPC case study
In the case study, to execute the analysis, we have used the
following tools and techniques. The analysis has been done by
one of the authors.

To efficiently examine the code, it is important to be able to
access individual versions of the code snapshots systematically. In
addition, we found that the ability to look at the differences
between versions often helps the analysis. To meet these
requirements, we have converted a series of captured code
snapshots to the file format used in the CVS (Concurrent
Versioning System) [1]. By importing the data into a CVS
repository, various tools developed for CVS can be utilized. In
particular, we used the ViewVC tool for visualizing change
history and source code “diff”s between versions. We did not use
any other tool for defect detection.

To familiarize ourselves with the code, we looked at both the
initial and final versions for all students. Since the data came from
multiple students solving the same problem, the understanding of
one code helped understanding other students’ code. In some
classes, students were given skeleton code to start from, which
made the code understanding easier as basic code structures
tended to be similar across students.

To look at changes, we examined all versions when the number of
versions was relatively small. Some students compiled the code
more than 600 times, in which case we picked important versions
according to the strategy described in Section 4.1. Since we
captured the source files every time the subjects compiled them,
the number depended on their work behavior; Some students
compiled code quite often, even when sometimes they did not
make any changes, while other students compiled the source code
far less often.

Before doing the analysis, we had prior knowledge that several
types of defects were considered important in the HPC community.
For example, we knew that synchronization defects such as
deadlocks and races occur in multi-processor/thread programs in
general, so we looked specifically for these types of defects. Also,
we kept in mind that program performance is an important
requirement in HPC. While producing correct output with poor
performance may not be considered a defect in other domains, we
had to look for problems in the code that would lead to
unsatisfactory execution speed.

Figure 3 shows an example of a defective MPI code fragment,
which was taken from actual data from students’ code for the
Buffon-Laplace Needle Problem, which is a method for
approximating � using Monte Carlo simulation (the code was
simplified to illustrate an important part). In this program, a
pseudo-random sequence (rand()) is used to simulate random
trials. To use independent sequences, the processors must
initialize the sequence with different seeds in the srand() function.
However, since the time() function returns the same current time
in seconds, which is likely to be the same for all processors, they
end up with the same pseudo-random sequence. Using the same
seed for all processors is a defect that causes the loss of
randomness, which reduces the accuracy of the result.

Below are other examples of the identified defects during the
initial defect analysis.

� In an MPI program, the MPI_Finalize() function must be
called before the program exits. A common defect was to forget
to call MPI_Finalize() in some execution path.

� When parallelizing a sequential program by dividing the
problem into processors, loop boundaries often have to be
modified to reflect the change in the mapping logic to the
problem space from the sequential program. Incorrect
modification leads to a defect, and is observed as out-of-bounds
errors, slightly incorrect output, etc.

� In a program employing the “master-worker” model [12], the
master process (typically the rank 0) is just waiting while other
“worker” processors are executing the loop. This is a
performance defect.

� Inter-dependencies between the processor communications
lead to significant performance problem, as the processors are
forced to follow unnecessary scheduling constraints.

� Point-to-point communication functions (MPI Send and
Recv) must be coordinated to avoid deadlock. A program that
depends on the assumption that the MPI_Send() never blocks
causes a potential deadlock depending on the MPI library
implementation and message size. [13] This type of defect is
harder to detect since it doesn’t always occur.

4.3 Documenting Defects
4.3.1 Methodology
The record of identified defects is the direct output of the analysis.
Since our methodology is bottom-up, all the high-level knowledge
to be derived from the analysis depends on how much information
the low-level defect records contains Therefore, it is extremely
important that the analyst record all findings regarding the defects
and related contexts.

To make documentation systematic, we recommend preparing a
template form which the analyst can fill in to document the
findings. The appropriate format of the template form will vary
with the target domain, but should contain the following
information.

� Problem being solved by the program (problem)

� Where was the defect found: file and version (location)

� What was wrong in the code (fault)

� How the defect manifested itself (failure)

� When the defect was inserted into the code and when it was
fixed (time to find and fix)

� How the defect was investigated and fixed by the developer
(developer workflow)

� Other findings and contexts (description)

In addition, all known context variables should be recorded. Such
variables include the language used, the nature of the problem
being solved, distinctive patterns in the code change, and
debugging techniques used.

A strength of this method is the richness of the information
generated by the analyst. The degree of detail that can be achieved
varies depending on the maturity of the defect analysis. Not all
information has to be provided at once, since the collection of
records can be iteratively revised as more results become
available. For example, location and fault will be easier to
identify initially than failure and time to find and fix.

4.3.2 Case study in HPC
In the case study, each item describe above was recorded in free
text. For example, the record for one instance of the defect shown
in Figure 3 is as follows.

� Problem: Buffon-Laplace in MPI + C. The students first
wrote a serial program and parallelized with three different
languages.

� Location: ES04-A1-05, revision 22, line 28: srand(time(0));

� Fault: srand() was called with the same seed (time() returns
current time in seconds, whch is likely to the same across
processors)

� Failure: the accuracy of the output is less than expected.
This is hard to detect, as it is an approximation problem

� Time to fix: fixed in revision 23, took 6 minutes

��������
� �� �	 � �
 �� �
� � � � � � � �� � �� �
� � � � � � � � � � � �� �����
����
�
� �� �� ���� � �� � � ����
�
!� ����
 " ���# ����$
 ����%�
����� � 	 & '� �(�
 ��� �� ���)��� � 	 & '� �� * � � � � * + ��
�����!��,��$ $ - ��
.�
� �� �	 � �
 �� �
� � � � 	 / � ������� �
� 0 � �������
����
�� �	 ���-)�� � 	 & '� ����

Figure 3. Example of a defective MPI code.

� Workflow: not sure how the subject investigated the defect

� Description: (omitted, it is identical to the description for
Figure 3)

4.4 Classifying Defects
4.4.1 Methodology
Although the individual defect samples recorded in the previous
subsection are useful by themselves, they should be classified into
categories in order to integrate the obtained knowledge and
identify patterns, which can provide insight in various ways:

� By grouping similar defects together, we can quantitatively
analyze the defect occurrence and severity by type. This allows
comparison across data from different projects and different
languages.

� Classification provides abstracted knowledge of defects in
the target contexts

� Presenting defect classification enables feedback at a higher
level of abstraction without forcing verifiers to reread the code
itself

To develop a good classification scheme from the given defect set,
the analyst must consider various aspects of the defect data. We
recommend a bottom-up approach of grouping the defects by
common context information or descriptions. Once good
groupings are obtained, the analyst should develop a definition for
each group by extracting common characteristics of defects and
abstracting them. Defining a classification scheme will help the
analyst decide whether the analysis was sufficient. If a good
classification scheme cannot be defined, the analyst should go
back to the defect analysis.

There can be more than one classification scheme. Different
classifications may be possible from same defect dataset
depending on who classifies them. Useful classification schemes
depend on the specific goals, so an appropriate level of
abstraction and the focus of the schemes should be determined
based on the purpose of the defect analysis.

Good classification depends on the purpose of the classification.
General properties include orthogonality (each defect fits into
only one type), completeness (for all defects of interest, there is
always a place to put it), and consistency (different analysts
classify a defect into the same defect type).

Within the methodology, classification is useful as a place to get
high-level feedback for the results of the analysis. Presenting
classifications with concrete defect examples will help clarify the
results. For correct understanding, wording is important in
defining each classification scheme.

4.4.2 Case study in HPC
To classify the defects that were identified and recorded, we
organized them into a candidate set of groups. Since the data we
obtained came from multiple students solving the same problem,
we had multiple examples of very similar defects. This made the
initial grouping easier, as very similar defects were made by
multiple students, which form an obvious group. For example,
when we try to abstract the defect instance in Figure 3, we paid
attention to the fact that this particular code portion did not
contain any constructs of a parallel language. The code was
indeed correct as a serial program. So this defect can be conceived
as an instance of the defect type in which ordinary serial language

constructs can cause a defect when they are put in a parallel
context.

In addition, we have reviewed literature on debugging tools for
HPC [4][10][17] that describe the defect types they assume.
Although their classification cannot be directly applied to our data
as they cover only the defect types their tools are targeted for, they
were useful for considering possible grouping. Finally, the
definitions for the abstracted defect types were created.

Table 1 shows the initial classification scheme we defined.

Table 1. Initial defect classification scheme

Type Definition

Algorithm Logical error

Serial constructs Defects also seen in a sequential program

Parallel language
features Misuse or failure to use language feature

Problem space
decomposition Incorrect/improper decomposition

Synchronization Incorrect/unnecessary synchronization

Load balancing Unbalanced workload for
processes/threads

4.5 Developing Hypotheses
As the analysis progresses, a set of research hypotheses will be
generated from the analysis results. These hypotheses should
capture high-level characteristics of the defects, e.g., which defect
types are frequently observed, which takes more effort to fix, etc.
The goal is to give support to domain-specific research questions.

� How can this defect type be detected? (detection logic)

� What can be done to avoid this defect type? (advice)

� What kind of tool is effective to prevent this defect type?
(tool)

In the case study, we have not yet developed formal hypotheses as
further iterations of the analysis need to be carried out.

5. VERIFICATION
5.1 Methodology
Although human analysis is very powerful, we expect a certain
degree of variation in accuracy across analysts and even within
analysts over time. An analyst’s criteria for what is a defect may
vary over time. It is also possible for an analyst to make an error.
These are why it is important to verify the results of the analysis.
Verification can be performed at several different abstraction
levels. Each approach requires a slightly different skill set, and the
cost of verification depends on the target domain and the maturity
of the analysis.

5.1.1 Quantitative verification
Input: defects (identified and true sets), output: precision and
recall

If we can somehow obtain the “true” defect sets, we can directly
compare the analysis results with them to evaluate the analysis
results quantitatively. There are two standard measures for this
kind of evaluation.

� Precision: the ratio of the actual defects to the defects
identified by the analysis. Defined as 1 – (false positive ratio).

� Recall: the ratio of the defects identified to the number of
total defects that exist in the code. Defined as 1 – (false negative
ratio).

Unfortunately, getting a “golden-truth” set of defects situation is
often difficult in practice. A possible way to conduct this kind of
verification is to start with a known defect set. The verifier
calculates precision and recall by comparing the defects identified
by the analyzer with the known defect set.

5.1.2 Individual defect based
5.1.2.1 Reliability study
Input: source code, output: defects

In this approach, multiple analysts independently analyze the
source code and record identified defects. The analysts act as their
own verifiers, as their results are compared against each other to
measure agreement. Several measures of inter-observer agreement
exist in the literature (e.g. index of agreement, Cohen’s Kappa)
[15].

5.1.2.2 Review of defects
Input: defects + source code, output: support/deny

In this approach, verifiers examine individual instances of defects
to check if each defect is correctly captured and documented.
They can also provide additional insights on each defect instance.
Verifiers are expected to be more familiar with the code
inspection, as they may need to refer to the source code to
evaluate the description of individual defects. This can be done by
an interview with experts.

5.1.3 Classification scheme based
5.1.3.1 Reliability study
Input: defects and classification scheme, output: classified defects

In this approach, One or more verifiers are provided defect
instances and asked to classify them into one of the given defect
types. This type of approach can also be used to check the
consistency of the classification scheme.

5.1.3.2 Review of classification
Input: classified defects, output: support/deny

In this approach, verifiers are presented with the definition of a
defect classification scheme and asked to provide feedback. This
is an effective way to validate the analysis results as a whole,
because the verifiers can check if all important defect types are
covered in the scheme without going through individual defects or
the source code itself. They can point out if the classification
scheme should be modified, and/or if a new defect type should be
added. Again, they are expected to have generic knowledge about
recurring defects from their experience.

This can be done by either an interview or a survey. Verification
at this level of abstraction is often useful, as the workload of
verifiers is relatively small, yet it can still provides insights on the
low-level analysis results.

5.1.4 Hypothesis based
5.1.4.1 Review of hypothesis
Input: hypotheses, output: support/deny

In this approach, the verification is performed by either
supporting or denying the hypotheses based on the verifiers’
experience. In other words, the verifiers act as experts who review
the output of the entire defect analysis and provide feedback. This
can be done by an interview or a survey.

5.1.4.2 Experimental verification
Input: hypotheses, output: result of a controlled experiment to test
the hypotheses

To test a specific hypothesis directly, a controlled experiment can
be conducted. An appropriate setting of the experiment depends
on the hypotheses being tested. Some experimental results can be
obtained without involving human verifiers, but experts' opinions
are often useful in interpreting the results and developing more
sophisticated hypotheses.

5.2 Verification in the Case Study
The verification was performed on the level of classification
scheme as well as defect data review.

5.2.1 Review of classification by survey
To verify our results, we first conducted a survey. The participants
of this survey were programmers, scientists, and vendors of HPC
technologies who were attending an HPC-related meeting. For the
survey, we first explained our classification scheme and defect
examples in an oral presentation. Then we distributed paper
survey forms. We also prepared a web version of the same survey
so that the participants who preferred entering the answers online
could do so. The survey was anonymous, and 14 people returned
the form. Their experience in HPC development varied from 5 to
22 years.

The survey form consisted of several questions. The survey
question intended to validate the defect analysis results at the
classification level was as follows: “Do the defect types [shown in
Table 1] look reasonable? Can you think of other defect types,
better wording or modification in definitions? Can you suggest a
different classification scheme?” The answers were given in free
text form.

For the proposed defect types, most participants agreed on our
classification scheme and suggested no modifications. The
comments provided were as follows:

� One participant commented that in his projects, the
algorithmic defect is eliminated by peer review before any code
is written.

� One participant commented that he did not understand the
serial construct defect. He noted that he did not listen to the
presentation.

For additional defect types, the following comments were
provided.

� Three participants suggested defects related to I/O. The
proposed defect types include I/O data format/conversion errors,
I/O performance issues, resource mismanagement in file/socket
open, and generic I/O problems.

� Four participants suggested defects related to memory
management. The proposed defect types include memory
mismanagement, invalid memory operation errors, memory
placement performance issues, and memory contention.

5.2.2 Review of defects + classification by interview
The second validation was performed at the level of individual
defects as well as the classification level. We interviewed with a
professor who has taught an HPC course for several years, along
with his teaching assistant who has been involved in multiple
iterations of the course. The professor has many years of
experience in HPC development.

The interview was conducted over the phone. Before the interview,
we prepared presentation material containing concrete examples
of defects categorized by type. During the interview, we went
through each defect example and examined if it looked reasonable.
The interviewees agreed that all defect examples were observed
quite often. They also agreed the classification scheme was
reasonably defined, but they commented about wording as
follows:

� The defect type “serial constructs” is confusing. A suggested
name is “side-effect of parallelization.”

� The defect type “load balancing” is too specific, as some
defects categorized as this type are addressing different kind of
performance problem (scheduling). A suggestion is to rename it
to “performance” to accommodate both kinds of problems.

Finally, they pointed out a defect which existed in the code
presented in Figure 3 but had not been identified in the previous
analysis. In the defect with the use of a pseudo-random sequence,
the implementation of the rand() function causes hidden
serialization. It leads to a performance problem when this function
is called by many processors simultaneously.

Based on the feedback from the verifiers, the classification
scheme has been updated as shown in Table 2. In a new scheme,
while the number of defect types was kept the same, sub-types
were defined to reflect the feedback from verifiers. Potential
defect types related to I/O are put as a sub-type of the “side-effect
of parallelization” defect in this revision. The definitions for
several defect types were rewritten for clarification. Using this
scheme and all other knowledge gained by the feedback from
verifiers, the source code should be reexamined in the next
iteration to check if the defects that were uncaught in the previous
iteration can now be identified.

Table 2. Revised defect classification scheme

Type Sub-type Definition

Algorithm Logical error

Side-effect of
parallelization

File I/O
Random func

Serial constructs causing
correctness and
performance defects when
accessed in parallel
contexts

Use of language
features Erroneous use of parallel

language features

Space
decomposition

Incorrect mapping
between the problem
space and the program
memory space

Synchronization Deadlock
Race

Incorrect/unnecessary
synchronization

Performance Load balancing
Scheduling

Scalability problem
because processors are not
working in parallel

6. SUPPORT BY TOOLS
One obvious challenge of reading-based defect analysis is that
manual reading of code is labor-intensive. It simply takes a
significant amount of time when a large program is analyzed, or
when there are many projects to be analyzed. Furthermore, since a
larger program tends to be harder to understand, the task of
finding defects by reading the source code becomes more
challenging.

The use of existing tools accelerates the detection process
considerably, when such tools exist. However, these tools are not
available for the majority of the defects we are interested in. One
solution is to develop a tool that can detect certain type of defect.
The development of these tools takes effort, and therefore a
tradeoff is implied. The analyst must decide where to invest in
automation. The following points should be considered.

� Is the automation feasible? To develop a defect detection tool,
a clear definition of the defect is required. Even if the definition
is clear, automation may not be possible. If not, using
knowledge as heuristics is more appropriate.

� Costs and benefits regarding the nature of the defects

o Does the defect seem to be recurring?

o How much effort is required to automate the detection
process?

o Should we implement the detection logic from scratch or
combine existing tools depending on the context?

� Costs and benefits after the tool is developed

o How expensive will the tool be to use? Does the code have
to be executed? Does the code have to be compiled? Is
special input required? How long will it take to run the
tool? What language can it be applied (generalizability,
applicability)?

� What other use does the tool have? Good tools are often
useful as defect detection tools for developers too.

These decisions are dependent on the contexts of the analysis.
Since the analysis is iterative, tools can be built during the
analysis process to gradually increase the degree of automation.

Other kinds of tools, including preprocessors and visualization
tools, can improve the accuracy and efficiency of manual analysis
by automating routine processes and allowing the analyst to focus
on the high-level tasks of defect analysis. For example, our
experience shows that a “diff” tool, which can visually display the
difference in the source file between versions, is particularly
useful for manual code analysis. Again, the requirements for these
tools may not be known before the analysis, and they should be
revealed as the iterative process goes on.

7. DISCUSSIONS
7.1 Requirements
As in any methodology, there are prerequisites to use our
methodology.

7.1.1 Availability of source code
The first requirement is that there is source code available for
analysis. Since many projects use a code management system such
as CVS (Concurrent Versioning System), source code is usually
available. In most cases, what are available are the “debugged”

versions of the code. We are interested in the intermediate
versions that exist between debugged versions. However, if we
cannot have all versions, we can look at the differences from one
debugged version to the next.

Also note that there are different degrees of availability for source
code. The most complete data is a complete set of source files
with all the change histories. The minimal case is a partial source
file of one particular version. The degree of availability affects the
efficiency and completeness of the analysis.

7.1.2 Availability of analysts
Since our methodology is based on code reading, our second
requirement is the existence of one or more personnel who can
actually inspect the source code, identify defects and record them.
Locating qualified analysts may be difficult. For one thing, it is a
well-known phenomenon that programmers dislike reading code
written by others, which may explain why inspection methods are
frequently not used despite the evidence that they are effective. It
is also a time-consuming job, so it is necessary to evaluate the
cost of “hiring” analysts. The skill of the analysts is also very
important. Analysts must have sufficient knowledge and
experience to be able to read other’s code and find problems. This
requires deep understanding of both the language and the problem
being solved. The analysts must familiarize themselves with the
structure of the code being analyzed quickly enough.

7.1.3 Availability of verifiers
The third requirement is the existence of verifiers who can
examine the analysis results, provide feedback, and validate
results as described below. The existence of verifiers is
indispensable to make this methodology repeatable and verifiable.
However, they may be gathered during or after the defect analysis.

The qualities required in verifiers are similar to those for analysts.
However, if the verification is conducted at a higher level,
verifiers may not have to directly inspect the code itself. Instead,
they need to have tacit knowledge about recurring defects to
provide proper feedback.

7.2 Lessons Learned
The results of the case studies provided the following insights.

� The study indicates the basic feasibility of the reading-based
analysis in domain-specific contexts. It was successfully applied
to identify several defects recurring in students’ code and derive
the classification scheme.

� We found that the use of source file diff tool is vital for an
efficient manual analysis. For example, by comparing an
intermediate version with the final version, we can identify the
changes that should contain all the bug fixes between them.
This helps determine what portion of the code should be
examined when there is no other clue available.

� Both the survey and the interview successfully provided
information useful for verifying the defect classification scheme.
In general, the verifiers agreed on majority of the analysis
results. Their feedback helped the analyzer revise the
classification scheme and improve the subsequent defect
analysis. The classification scheme helped reveal a defect type
that had not been addressed by the analysis.

� The verifiers understood the classification scheme better
when they were also presented concrete defect examples for

each defect type. Providing only the definitions of the defect
types without examples confused some verifiers and made the
classification scheme harder to understand.

� The defect analysis was labor-intensive especially when there
were no heuristics or tools available. Analysts can easily get lost
without a specific perspective to look at the code. As the
analysis progresses, the analysis can be made more systematic.
This seems to support the assumption that the analysis is
difficult at the startup, and analyzing simpler code first is
recommended.

� Aside from the fact that change history is essential for
determining how much time was spent to find and fix each
defect, looking at the change history was useful for just
identifying defects. For example, by comparing an intermediate
version with the final version, the analyst can determine what
has been fixed between two versions. This technique is
especially useful when the analyst is trying to determine what
aspect of the source code should be examined carefully. In
practice, a good visualization tool that can graphically display
the difference between versions improved the efficiency of the
manual analysis.

� Understanding of the problem domain seemed to have strong
influence on the efficiency of the analysis. This may cause
additional workload to the analysts. In HPC, it is common that
understanding of the core algorithm requires the background
knowledge on the underlining science and mathematics. When
an analyst needs to examine the code from multiple problem
domains, it is probably necessary to get help from project
developers who are already familiar with the code and the
algorithm.

8. SUMMARY
In this paper, we described a methodology of defect analysis
based on code reading. Our methodology uses existing software
with source code history, and it can be used to identify defects and
construct a defect classification scheme by analyzing inspecting
source code history. The methodology depends upon the
availability of source code for defect reading analysis. Many
organizations use a source code management system, so change
history is more likely to be available than bug history. It also
depends upon developers involved in the software having tacit
knowledge about recurring defects from their own experience.
Even if it is not easy for them to package their knowledge in a
usable form, if they are presented concrete material prepared by
someone else, they can respond to it by saying whether they agree
or not, and modify the material with new perspectives. This is
most successful when they are shown actual examples related to
their own experience.

We have applied our methodology to the HPC domain, where we
need to build knowledge on recurring defects to decrease
development cost. We collected data from graduate students who
were learning HPC programming and solved some HPC problems
as class assignment. The collected defect data should provide
baseline data for novices and small problems, which will be useful
to move forward to larger, more complex problems with more
experienced developers. We have analyzed the code snapshots
from 38 students in 5 problems solved with MPI-C, and identified
defects. From this data we have developed a defect classification
scheme.

For validation, we have done classification-level validation and
validation at the defect level. At the classification level, we have
gotten responses which indicate that our defect classification
scheme was reasonably defined. However, people have different
opinions about which defects are important, possibly because
their projects have different contexts. Several comments provided
lead possible refinements to the classification scheme in the future
as we analyze more data. At the defect level, the defects we have
identified in HPC code were confirmed to be recurring.
Furthermore, the verifiers pointed out another defect in the
example that was not previously identified by the analyst. All of
the information obtained at both abstraction levels obtained as a
response to the analysis results was very useful, and thus, our
methodology indeed worked well for turning hidden knowledge of
experts into explicit knowledge.

Although our study is preliminary, the results indicate the
feasibility and effectiveness of the methodology. In a future, we
will do more case studies to obtain more results so that we can
refine the methodology.

ACKNOWLEDGMENTS
This research was supported in part by Department of Energy
contracts DE-FG02-04ER25633 and Air Force grant FA8750-05-
1-0100 to the University of Maryland. We wish to acknowledge
the contributions of the various faculty members and their
students who have participated in the various experiments we
have run over the past 2 years. This includes Alan Edelman at
MIT, John Gilbert at the University of California Santa Barbara,
Mary Hall at the University of Southern California, Alan Snavely
at the University of California San Diego, and Uzi Vishkin at the
University of Maryland. We wish to thank Stacy Hochstein for
reviewing the draft of this paper.

REFERENCES
[1] Bar, M. and Fogel, K., Open Source Development with CVS.

Paraglyph, 2003.

[2] Basili, V. R. and Perricone, B. Software Errors and
Complexity: An Empirical Investigation. Communications of
the ACM, Volume 27, Issue 1, 1984, 42-52.

[3] Basili, V. R. and Reiter, R. W. Jr. Evaluating Automatable
Measures of Software Development. In Proceedings on
Workshop on Quantitative Software Models. October, 1979.

[4] Collette, M., Corey, B., and Johnson, J. High Performance
Tools & Technologies, Technical Report UCRL-TR-209289,
Lawrence Livermore National Laboratory, US. Dept. of
Energy, 2004.

[5] Dagum, L. and Menon, R. OpenMP: An Industry-Standard
API for Shared-Memory Programming, IEEE Computational
Science & Engineering, Volume 5, Issue 1, 1998, 46-55.

[6] Dongarra, J. J., Otto, S. W., Snir, M., and Walker, D. A
Message Passing Standard for MPP and Workstations,

Communications of the ACM Volume 39, Issue 7, 1996, 84-
90.

[7] Dunsmore, A., Roper, M., Wood, M. Practical Code
Inspection Techniques for Object-Oriented Systems: An
Experimental Comparison, IEEE Software, Volume 20, No.
4, 2003, 21-29.

[8] Dunsmore, H. E. and Gannon, J. D. Programming Factors -
Language Features That Help Explain Programming
Complexity. In Proceedings of the 1978 Annual Conference,
ACM/CSC-ER, ACM Press, New York, NY, 1978, 554-560.

[9] Hovemeyer, D. and Pugh, W. Finding Bugs Is Easy. ACM
SIGPLAN Notices, Volume 39, Issue 12, 2004, 92-106.

[10] Luecke, G., Zou, Y., Coyle, J., Hoekstra, J., Kraeva, M.
Deadlock Detection In MPI Programs, Concurrency and
Computation: Practice and Experience. Volume 14, 2002,
911-932.

[11] Maldonado, J., Carver, J., Shull, F., Fabbri, S., Doria, E.,
Martimiano, L., Mendonça, M., and Basili, V. Perspective-
Based Reading: A Replicated Experiment Focused on
Individual Reviewer Effectiveness. Empirical Software
Engineering: An International Journal. Volume 11, Number
1, 2006.

[12] Mattson, T.G., Sanders, B.A., and Massingill, B.L. Patterns
for Parallel Programming, Addison-Wesley, 2004.

[13] Message Passing Interface Forum, MPI: A Message Passing
Interface Standard, May UT-CS-94-230, 1994.

[14] Numrich, R. W. and Reid, J. K. Co-Array Fortran for Parallel
Programming, RAL-TR-1998-060, 1998.

[15] Robson, C. Real World Research, Blackwell Publishing,
2002.

[16] Spacco, J., Strecker, J., Hovemeyer, D., and Pugh, W.
Software Repository Mining with Marmoset: An Automated
Programming Project Snapshot and Testing System, In
Proceedings of the Mining Software Repositories Workshop
(MSR 2005), St. Louis, Missouri, 2005

[17] Squyres, J., DeSouza, J. Why MPI Makes You Scream! And
how Can We Simplify Parallel Debugging? BOF in
Supercomputing'05 (SC05), 2005.

[18] Top 500 Supercomputer Sites, http://www.top500.org/

[19] ViewVC (ViewCVS) Repository Browsing,
http://www.viewvc.org/

[20] Weiss, D. and Basili, V. R. Evaluating Software
Development by Analysis of Changes: Some Data from the
Software Engineering Laboratory, IEEE Transactions on
Software Engineering, Volume 11, Issue 2, 1985, 157-168.

[21] Williams, C. C. and Hollingsworth, J. K. Automatic Mining
of Source Code Repositories to Improve Bug Finding
Techniques. IEEE Transactions on Software Engineering,
Volume 31, Issue 6, 2005, 466-480.

