
The cost of the build tax in scientific software

Lorin Hochstein
USC/ISI, Arlington, VA

lorin@isi.edu

Yang Jiao
Virginia Tech, Blacksburg, VA

jiaoyang@vt.edu

Abstract—All compiled software systems require
a build system: a set of scripts to invoke compilers
and linkers to generate the final executable binaries.
For scientific software, these build scripts can become
extremely complex. Anecdotes suggest that scientific
programmers have long been dissatisfied with the
current software build toolchains. In this paper, we
describe preliminary results from a case study of two
projects to estimate the fraction of effort devoted to
maintaining these scripts, which we refer to as the
‘build tax’. While estimates based on line counts are
on the order of only 5%, estimates based on activity-
related metrics suggest much higher values.

Keywords-scientific computing; makefiles; case
studies; software repositories

I. Introduction

When a developer sets out to write a program in a
compiled language, she will invariably write two: the
main program itself, and a secondary one that invokes
compilers and linkers to transform the main program
from source code to executable binary. These secondary
programs are commonly implemented as makefiles, a
script-based technology which dates back to the mid-
seventies [3]. As a community, we software engineering
researchers have not paid much attention to the devel-
opment of build scripts. However, for scientific software,
writing and maintaining these build scripts can be a
substantial headache. In this paper, we refer to this ad-
ditional effort overhead to maintain build scripts as the
build tax. In order to estimate the magnitude of the build
tax, we performed a case study of two computational
science projects. By focusing on two projects, we hope
to gain insights into the software development process of
computational scientists and provide initial estimates on
the impact of build effort that will serve as a starting-
off point for future studies, as well as to motivate the
development of better build tools.

The projects we selected for our case studies have
much in common: both incorporate simulations of ther-
monuclear reactions, are written mostly in Fortran, and
have access to unclassified supercomputers located at
U.S. Department of Energy (DOE) facilities. The first
is the FACETS project1, a distributed computational

1http://www.facetsproject.org

science software project led by Tech-X Corporation.
The second is the Flash Center2, a collocated compu-
tational science software project based at the University
of Chicago.

A. Background: FACETS and FLASH projects

The FACETS (Framework Application for Core-Edge
Transport Simulations) project was started in early 2007
with the goal of providing a framework for simulation
plasma confinement for the fusion energy platform. The
project is supported by funding from the U.S. Depart-
ment of Energy (DOE). The project team is distributed
across eleven organizations, including commercial com-
panies, U.S. government laboratories, and university
labs. Because the project is spread across multiple or-
ganizations, the physics components are developed in
different institutional cultures, where each culture repre-
sents unique challenges and code development practices
that impact software engineering issues.

The Flash Center was started at the University of
Chicago around 1997 with the goal of studying ther-
monuclear flashes, events of rapid or explosive ther-
monuclear burning that occur on the surfaces and in
the interiors of compact stars. To conduct this research,
the Flash Center developed a simulation code called
FLASH [1]. The FLASH code simulates the thermonu-
clear explosions of stars, and can be used for vari-
ous other astrophysical, cosmological and computational
fluid dynamics simulations. The FLASH code is used
both by scientists affiliated with the Flash Center as well
as external users, who can obtain access to the source
code at no cost if certain conditions are met.

B. Prior beliefs

Our prior beliefs about build effort going into this
project were based on the prior work of Kumfert and
Epperly [5]. They ran a survey of computational scien-
tists at DOE labs and universities and found reported
overheads of about 12%, with individual cases into the
20–30% range. We believed that the FACETS project
would lie at the higher end of this scale because it has
a large number of external libraries as dependencies and

2http://flash.uchicago.edu



has a wider variety of legacy practices, and that the
Flash project would be in the middle end of the scale.

C. How analysis was done

In the literature, previous research on development ef-
fort in commercial software project has leveraged change
request data to estimate effort by using the length of
time a change request is open. For example, Eick et al.
used this method to analyze code decay[2], and Herblseb
and Mockus used this to analyze the impact of dis-
tributed software development [4]. For our study, while
both projects under investigation had local installations
of issue tracking tools, neither project consistently uses
those tools for issue tracking. Therefore, so we could not
rely on issue open/close dates to estimate effort.

Instead, we analyzed other data from the software
repositories that were generated naturally be the sci-
entists as they developed the software. The primary
sources of data we used were source code, version control
repositories and regression testing results.

Both FACETS and the Flash Center use subversion as
their version control system. Both projects have devel-
oped their own custom regression testing solution. Each
night, the test system executes numerous tests of code
on multiple machines and displays the results of the tests
in a web interface. The FACETS regression test system
also sends out emails to the mailing list with the result
of the tests.

II. Estimating build overhead

A. Build systems

1) FACETS build system: FACETS uses the GNU
autotools toolchain3 to generate executables from source
code. This toolchain will be familiar to most users of
UNIX-based systems that have had to build a C-based
open source software package from source code.

The FACETS project has implemented their own
package management system on top of autotools, called
Bilder4. The system is implemented entirely in bash
shell scripts. FACETS compiles a single executable and
instantiates components at runtime based on an input
file.

2) FLASH build system: The FLASH build system is
based on a combination of Makefiles, Python scripts, and
FLASH-specific configuration files. The FLASH code is
designed as a collection of components. For any par-
ticular execution run, a subset of the components are
compiled and linked together to form an executable.
The user specifies these components at compile-time by
editing a FLASH configuration file. The Python scripts

3http://www.gnu.org/software/autoconf
4https://ice.txcorp.com/trac/bilder

use these configuration files to assemble together the rel-
evant FLASH components and generate the appropriate
makefile.

B. Code volume

1) FACETS code volume: FACETS comprises about
1.5 MSLOC (millions of source lines of code). To count
lines of source code and classify by language, we used
the University of Hawaii edition of SCLC 5, using the
trunk of the FACETS code repository as of January 1,
2011. We considered any hand-generated files used by
the autotools toolchain to be makefile-related. We did
not count non-source files (e.g., data files, images, doc-
umentation), nor did we count auto-generated makefiles
or intermediate products, which are not maintained in
the repository.

We did an initial classification of source files by pro-
gramming language. In most cases, the filename ex-
tension clearly indicates the type of file. For example,
.cpp extensions were classified as C++, .f extensions
were classified as Fortran, .sh extensions were classified
as shell scripts. In some casese, the extension did not
provide enough information to classify file type. For
example, many files had .in extensions, because they
were template files in various languages. In these cases,
we manually defined rules that were used to properly
classify these files, and we augmented SCLC to support
language classification by rules.

The code is primarily Fortran and C/C++. However,
there are over a hundred thousand lines of code that
are not primarily source code, but are makefile scripts,
as well as scripts in other languages, such as Unix shell
(bash), Python, IDL, Perl, Matlab, (Emacs) Lisp, and
XML.

2) FLASH code volume: FLASH comprises about 420
KSLOC. FLASH is about 420 KSLOC, most of which is
Fortran code, primarily Fortran 90 with some Fortran 77.
In addition to some C, we see many of the same scripting
languages as in FACETS (makefile scripts, Python, shell
scripts, IDL, Perl, Matlab).

3) Estimating build effort by size of code: If the
amount of time spent on build-related development is-
sues is proportional to the time spent editing build-
related code, then we can estimate the percentage of time
spent on build-related issues by examining the source
code alone.

We divided up the code into four categories: 1. Source:
source files that are part of the simulation software itself,
typically C/C++ and Fortran. 2. Build : source files
associated with the build. Mostly make-related files, but
may also include scripts. 3. Other : any source files that
are not part of source or build. Typically associated with

5http://code.google.com/p/sclc



pre-processing input files, post-processing data, or other
utilities not related to building. 4. Unknown: any files
where it was not obvious to the authors how to classify
the file.

If a file is used for the process of transforming the
source code into an executable, and the file is manually
generated, then we considered it build-related. For both
projects, we consider any hand-generated file used by
autotools to be a build file

For the FACETS projects, we include all shell script
files that the comprise the Bilder system as build-
related. For the FLASH project, we include the Python
build scripts that make up the FLASH build system,
as well as the FLASH configuration files that serve as
inputs to the build system.

Build-related code represents about 6% of the
entire FACETS repository and 5% of the FLASH
repository.

C. Version control activity

The data from the previous section provides a sense
of how much build-related code is in the project, but
that analysis assumes that time spent on build-related
issues is directly proportional to the amount of build-
related code. However, where some files will be touched
infrequently, others will be modified many times over the
lifetime of the project. For example, it seems reasonable
that build-related code does not require as much modi-
fication over the lifetime of the project as source code,
because the build configuration does not change as often
as bugfixes and new code features.

An alternative way to measure the build overhead is to
measure the amount of time that the developers spend
editing build-related code. While this cannot be directly
measured in retrospect, we can estimate this value using
the version control history of the software. As mentioned
in Section I, both FACETS and FLASH use Subversion
as their version control system. To estimate the build
overhead, we calculate the percentage of build-related
commits.

The FLASH repository contained 11292 revisions in
the range February 22, 2005 – June 14, 2011. However,
we only considered revisions that affected at least one
file that fell into any of the four categories mentioned in
Section II-B. We neglect commits to files unrelated to
development, such as documentation files or data files.
This brings the number down to 5184 commits.

If we consider only commits where every file involved
was build-related, we get an estimate of 19%. If we
consider a more liberal definition, where any commit
that touches at least one build file is build-related, this
yields an estimate of 37%.

The FACETS project has a more complex version
control repository. The codebase is distributed across

28 separate subversion repositories, and extensive use of
subversion externals enables developers to check out the
entire source tree with a single checkout command.

In the range January 16, 2000 – June 15, 2011, there
were 12355 commits of interest. If we consider only
commits where every file involved was build-related, we
get an estimate of 58%. If we consider a more liberal
definition, where any commit that touch at least one
build file is build-related, this yields an estimate of
65%.

D. Automated regression tests

Both projects run daily automated tests using custom
regression test systems. Regression tests runs daily, and
a web-based dashboard shows the test results.

For FACETS, we examined test data in the range
January 01, 2010 – December 15, 2010. There were 2812
regression tests run, including builds, across 3 different
machines. Build failures were 11% of all failures.

We can use these results to estimate the percentage
of effort spent fixing regression errors that are build-
related. We assume a failure was build-related if either
the build failed, or tests passed when run on one machine
but failed when run on a different machine.

Out of the 1120 test failures, there were 243 that
passed on one machine but failed on another. This
fraction represents 22% of all failed tests. If we count
build-related failures as a fraction of total, we get 30%

For Flash, we examined test data over a period from
June 30, 2009 to June 30, 2010. There were 156778 tests
executed by FlashTest across 8 platforms in this time
period.

Compilation-related failures were 13% of all failures.
As with the previous analysis, we also considered more
general build-related failures as either failure in compila-
tion, or tests passing on one machine but failing in text
or execution on another machine.

There were 8731 tests that passed on one machine but
failed in test or execution on another machine. If we
combine that with the number of failed compilations,
47% test failures appear build-related.

III. Discussion

Table I summarizes the estimates of build overhead
using the three different metrics we examined, ordered
from smallest to largest estimates.

Table I
Estimated build overhead by metric

FACETS FLASH
Lines of code 6% 5%
Regression tests 11–30% 13–47%
Version control repository 58–65% 19–37%



Note the large variation in estimates across the differ-
ent metrics, with lines of code being both the smallest
and the simplest to measure. Only a small fraction of
the codebase is made up of build-related scripts, which
was consistent with estimates given to us by developers
on each of the projects before we began our analysis.
However, the estimates are significantly larger when
examining regression tests or commits to the version
control repository.

We were surprised by the discrepancy between lines of
code and version control repository: we expected results
to be similar here. However, these results suggest that
build scripts are modified much more often than one
would expect given the small fraction of overall code
that they represent. Even though the FLASH project
has much fewer external dependencies than FACETS,
about a fifth to a third of the code files committed were
build-related.

Feedback from the developers suggests that the single
biggest driver for build issues is the need to support the
so-called Leadership Class Facilities, the large, one-of-
a-kind supercomputers. Such machines offer the highest
level of performance, but at a cost. Often, such machines
require cross-compilation, which adds an additional level
of complexity. The associated non-standard installations,
use of compiler scripts, and frequent software upgrades
makes maintaining stable builds on leadership machines
a challenge for code teams.

IV. Threats to validity

When examining any case study, interpreting and gen-
eralizing the results is challenging because of the context-
dependent nature of the results. Here, we briefly touch
on some particular threats to validity when interpreting
the results of this study.

The major threat to validity in this analysis is that
of construct validity. In this case, the construct we are
trying to measure is development effort: time spent on
writing and maintaining build scripts. Because we can’t
measure this directly, we are forced to rely on indirect
measures. We attempted to mitigate this by employing
triangulation, using multiple metrics.

There is an implicit assumption underlying this work
that the amount of build-related overhead is constant for
a mature software project such as FACETS or FLASH.
In fact, we have reason to believe that this is not the
case, since we expect that the build-related development
will increase when porting to new platforms or when
incorporating new libraries. In this study, we did not
have the opportunity to analyze the temporal nature of
the build effort in more detail.

V. Conclusions and future work

The results from these case studies suggest that the
build tax represents a larger fraction of the total devel-

opment effort than simple line counts would indicate.
While it is always risky to generalize from two cases,
the implications are important for the HPC community,
as these results give a sense of the real costs associated
with maintaining complex build systems and motivate
the need for better build tools.

There are several avenues we intend to pursue. We
plan to validate this initial analysis through a more
detailed qualitative examination of the data. We also
plan to look in more detail at the temporal nature of the
build-related development effort. We hypothesize that
build-related activity is episodic, occurring mainly when
porting to new machines or incorporating new libraries,
but this hypothesis has not been tested. We also would
like to qualitatively assess build-related development
activity, by addressing questions such as: What are
the types of build-related problems that developers run
into? Which ones are the hardest to resolve? How do
developers typically fix them?

VI. Acknowledgments

This work has been supported under DOE award DE-
SC0002347. The authors gratefully acknowledge the help
of the FACETS team and the Flash Center Code Group,
without whom this work would not have been possible.
The FLASH code is supported by the U.S. Department
of Energy under Grant No. B523820 to the Center for
Astrophysical Thermonuclear Flashes at the University
of Chicago. The FACETS code is supported by the DOE
SciDAC program. We would also like to thank John
Cary, Scott Kruger, Anshu Dubey, Tom Epperly, and
Sveta Shasharina for their feedback on an earlier version
of this paper.

References

[1] A. Dubey, K. Antypas, M. K. Ganapathy, L. B. Reid,
K. Riley, D. Sheeler, A. Siegel, and K. Weide. Extensible
component-based architecture for FLASH, a massively
parallel, multiphysics simulation code. Parallel Comput-
ing, 35:512–522, October 2009.

[2] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mockus. Does code decay? Assessing the evidence
from change management data. IEEE Transactions on
Software Engineering, 27:1–12, 1998.

[3] S. I. Feldman. Make – a program for maintaining
computer programs. Softawre: Practice and Experience,
9(4):255–265, 1979.

[4] J. D. Herbsleb and A. Mockus. An empirical study of
speed and communication in globally-distributed software
development. IEEEE Transactions on Software Engineer-
ing, 29(6), June 2003.

[5] G. Kumfert and T. Epperly. Software in the DOE: The
hidden overhead of ”the build”. Technical Report UCRL-
ID-147343, Lawrence Livermore National Lab., Feb. 28
2002.


